Do you want to publish a course? Click here

Biomedical Question Answering: A Survey of Approaches and Challenges

160   0   0.0 ( 0 )
 Added by Qiao Jin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Automatic Question Answering (QA) has been successfully applied in various domains such as search engines and chatbots. Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand complex biomedical knowledge. There have been tremendous developments of BQA in the past two decades, which we classify into 5 distinctive approaches: classic, information retrieval, machine reading comprehension, knowledge base and question entailment approaches. In this survey, we introduce available datasets and representative methods of each BQA approach in detail. Despite the developments, BQA systems are still immature and rarely used in real-life settings. We identify and characterize several key challenges in BQA that might lead to this issue, and discuss some potential future directions to explore.



rate research

Read More

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.
Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artificial intelligence (AI) which has led to the introduction of a special research topic on Conversational Question Answering (CQA), wherein a system is required to understand the given context and then engages in multi-turn QA to satisfy the users information needs. Whilst the focus of most of the existing research work is subjected to single-turn QA, the field of multi-turn QA has recently grasped attention and prominence owing to the availability of large-scale, multi-turn QA datasets and the development of pre-trained language models. With a good amount of models and research papers adding to the literature every year recently, there is a dire need of arranging and presenting the related work in a unified manner to streamline future research. This survey, therefore, is an effort to present a comprehensive review of the state-of-the-art research trends of CQA primarily based on reviewed papers from 2016-2021. Our findings show that there has been a trend shift from single-turn to multi-turn QA which empowers the field of Conversational AI from different perspectives. This survey is intended to provide an epitome for the research community with the hope of laying a strong foundation for the field of CQA.
The recent success of question answering systems is largely attributed to pre-trained language models. However, as language models are mostly pre-trained on general domain corpora such as Wikipedia, they often have difficulty in understanding biomedical questions. In this paper, we investigate the performance of BioBERT, a pre-trained biomedical language model, in answering biomedical questions including factoid, list, and yes/no type questions. BioBERT uses almost the same structure across various question types and achieved the best performance in the 7th BioASQ Challenge (Task 7b, Phase B). BioBERT pre-trained on SQuAD or SQuAD 2.0 easily outperformed previous state-of-the-art models. BioBERT obtains the best performance when it uses the appropriate pre-/post-processing strategies for questions, passages, and answers.
Biomedical question answering (QA) is a challenging task due to the scarcity of data and the requirement of domain expertise. Pre-trained language models have been used to address these issues. Recently, learning relationships between sentence pairs has been proved to improve performance in general QA. In this paper, we focus on applying BioBERT to transfer the knowledge of natural language inference (NLI) to biomedical QA. We observe that BioBERT trained on the NLI dataset obtains better performance on Yes/No (+5.59%), Factoid (+0.53%), List type (+13.58%) questions compared to performance obtained in a previous challenge (BioASQ 7B Phase B). We present a sequential transfer learning method that significantly performed well in the 8th BioASQ Challenge (Phase B). In sequential transfer learning, the order in which tasks are fine-tuned is important. We measure an unanswerable rate of the extractive QA setting when the formats of factoid and list type questions are converted to the format of the Stanford Question Answering Dataset (SQuAD).
Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Early studies mainly focused on answering simple questions over KBs and achieved great success. However, their performance on complex questions is still far from satisfactory. Therefore, in recent years, researchers propose a large number of novel methods, which looked into the challenges of answering complex questions. In this survey, we review recent advances on KBQA with the focus on solving complex questions, which usually contain multiple subjects, express compound relations, or involve numerical operations. In detail, we begin with introducing the complex KBQA task and relevant background. Then, we describe benchmark datasets for complex KBQA task and introduce the construction process of these datasets. Next, we present two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. Specifically, we illustrate their procedures with flow designs and discuss their major differences and similarities. After that, we summarize the challenges that these two categories of methods encounter when answering complex questions, and explicate advanced solutions and techniques used in existing work. Finally, we conclude and discuss several promising directions related to complex KBQA for future research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا