Do you want to publish a course? Click here

Patterns, predictions, and actions: A story about machine learning

113   0   0.0 ( 0 )
 Added by Moritz Hardt
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This graduate textbook on machine learning tells a story of how patterns in data support predictions and consequential actions. Starting with the foundations of decision making, we cover representation, optimization, and generalization as the constituents of supervised learning. A chapter on datasets as benchmarks examines their histories and scientific bases. Self-contained introductions to causality, the practice of causal inference, sequential decision making, and reinforcement learning equip the reader with concepts and tools to reason about actions and their consequences. Throughout, the text discusses historical context and societal impact. We invite readers from all backgrounds; some experience with probability, calculus, and linear algebra suffices.



rate research

Read More

The explosion in workload complexity and the recent slow-down in Moores law scaling call for new approaches towards efficient computing. Researchers are now beginning to use recent advances in machine learning in software optimizations, augmenting or replacing traditional heuristics and data structures. However, the space of machine learning for computer hardware architecture is only lightly explored. In this paper, we demonstrate the potential of deep learning to address the von Neumann bottleneck of memory performance. We focus on the critical problem of learning memory access patterns, with the goal of constructing accurate and efficient memory prefetchers. We relate contemporary prefetching strategies to n-gram models in natural language processing, and show how recurrent neural networks can serve as a drop-in replacement. On a suite of challenging benchmark datasets, we find that neural networks consistently demonstrate superior performance in terms of precision and recall. This work represents the first step towards practical neural-network based prefetching, and opens a wide range of exciting directions for machine learning in computer architecture research.
71 - I-Sheng Yang 2020
Causal machine-learning is about predicting the net-effect (true-lift) of treatments. Given the data of a treatment group and a control group, it is similar to a standard supervised-learning problem. Unfortunately, there is no similarly well-defined loss function due to the lack of point-wise true values in the data. Many advances in modern machine-learning are not directly applicable due to the absence of such loss function. We propose a novel method to define a loss function in this context, which is equal to mean-square-error (MSE) in a standard regression problem. Our loss function is universally applicable, thus providing a general standard to evaluate the quality of any model/strategy that predicts the true-lift. We demonstrate that despite its novel definition, one can still perform gradient descent directly on this loss function to find the best fit. This leads to a new way to train any parameter-based model, such as deep neural networks, to solve causal machine-learning problems without going through the meta-learner strategy.
Supervised, semi-supervised, and unsupervised learning estimate a function given input/output samples. Generalization of the learned function to unseen data can be improved by incorporating side information into learning. Side information are data that are neither from the input space nor from the output space of the function, but include useful information for learning it. In this paper we show that learning with side information subsumes a variety of related approaches, e.g. multi-task learning, multi-view learning and learning using privileged information. Our main contributions are (i) a new perspective that connects these previously isolated approaches, (ii) insights about how these methods incorporate different types of prior knowledge, and hence implement different patterns, (iii) facilitating the application of these methods in novel tasks, as well as (iv) a systematic experimental evaluation of these patterns in two supervised learning tasks.
Federated learning (FL) is a rapidly growing research field in machine learning. However, existing FL libraries cannot adequately support diverse algorithmic development; inconsistent dataset and model usage make fair algorithm comparison challenging. In this work, we introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison. FedML supports three computing paradigms: on-device training for edge devices, distributed computing, and single-machine simulation. FedML also promotes diverse algorithmic research with flexible and generic API design and comprehensive reference baseline implementations (optimizer, models, and datasets). We hope FedML could provide an efficient and reproducible means for developing and evaluating FL algorithms that would benefit the FL research community. We maintain the source code, documents, and user community at https://fedml.ai.
A dry decade in the Navajo Nation has killed vegetation, dessicated soils, and released once-stable sand into the wind. This sand now covers one-third of the Nations land, threatening roads, gardens and hundreds of homes. Many arid regions have similar problems: global warming has increased dune movement across farmland in Namibia and Angola, and the southwestern US. Current dune models, unfortunately, do not scale well enough to provide useful forecasts for the $sim$5% of land surfaces covered by mobile sand. We test the ability of two deep learning algorithms, a GAN and a CNN, to model the motion of sand dunes. The models are trained on simulated data from community-standard cellular automaton model of sand dunes. Preliminary results show the GAN producing reasonable forward predictions of dune migration at ten million times the speed of the existing model.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا