Do you want to publish a course? Click here

Investigation of the dynamics of inner gas during bursting of a bubble at the free surface

323   0   0.0 ( 0 )
 Added by Digvijay Singh
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present study, simulations are directed to capture the dynamics of evacuating inner gas of a bubble bursting at the free surface, using Eulerian based volume of fluid (VOF) method. The rate by which surrounding air rushing inside the bubble cavity through the inner gas evacuation is estimated and compared by the collapsing bubble cavity during the sequential stages of the bubble bursting at the free surface. Further, the reachability of inner gas over the free surface is evaluated by establishing the comparison of the same through various horizontal planes, lying at different altitudes above the unperturbed surface. The evacuating inner gas accompanies vortex rings, which entrains the surrounding gas-phase. During the successive stages of air entrainment, spatiotemporal characteristics of the vortex ring are obtained. At low Bond numbers (< 1), after comparing the phase contours of evacuating inner gas from the bubble cavity, the consequences at the axial growth of gas jet and the radial expansion of the jet tip is discussed separately. Furthermore, under the respiration process, the axial growth of rising inner gas over the free surface and the radial expansion of vortex rings of a bubble bursting at the free surface is compared with the quiescent surrounding air. At last, the effects of various possible asymmetric perforation of the bubble cap keeping the same Bo are studied. The cause of bent gas jet, as a consequence of perforation of the bubble cap, asymmetrically, is explained by plotting the velocity vectors.

rate research

Read More

The impact of a collapsing gas bubble above rigid, notched walls is considered. Such surface crevices and imperfections often function as bubble nucleation sites, and thus have a direct relation to cavitation-induced erosion and damage structures. A generic configuration is investigated numerically using a second-order-accurate compressible multi-component flow solver in a two-dimensional axisymmetric coordinate system. Results show that the crevice geometry has a significant effect on the collapse dynamics, jet formation, subsequent wave dynamics, and interactions. The wall-pressure distribution associated with erosion potential is a direct consequence of development and intensity of these flow phenomena.
We numerically investigate the effect of non-condensable gas inside a vapor bubble on bubble dynamics, collapse pressure and pressure impact of spherical and aspherical bubble collapses. Free gas inside a vapor bubble has a damping effect that can weaken the pressure wave and enhance the bubble rebound. To estimate this effect numerically, we derive and validate a multi-component model for vapor bubbles containing gas. For the cavitating liquid and the non-condensable gas, we employ a homogeneous mixture model with a coupled equation of state for all components. The cavitation model for the cavitating liquid is a barotropic thermodynamic equilibrium model. Compressibility of all phases is considered in order to capture the shock wave of the bubble collapse. After validating the model with an analytical energy partitioning model, simulations of collapsing wall-attached bubbles with different stand-off distances are performed. The effect of the non-condensable gas on rebound and damping of the emitted shock wave is well captured.
A rapidly growing bubble close to a free surface induces jetting: a central jet protruding outwards and a crown surrounding it at later stages. While the formation mechanism of the central jet is known and documented, that of the crown remains unsettled. We perform axisymmetric simulations of the problem using the free software program basilisk, where a finite-volume compressible solver has been implemented, that uses a geometric Volume-of-Fluid method (VoF) for the tracking of the interface. We show that the mechanism of crown formation is a combination of a pressure distortion over the curved interface, inducing flow focusing, and of a flow reversal, caused by the second expansion of the toroidal bubble that drives the crown. The work culminates in a parametric study with the Weber number, the Reynolds number, the pressure ratio and the dimensionless bubble distance to the free surface as control parameters. Their effects on both the central jet and the crown are explored. For high Weber numbers, we observe the formation of weaker secondary crowns, highly correlated with the third oscillation cycle of the bubble.
Exact solutions of a classical problem of a plane unsteady potential flow of an ideal incompressible fluid with a free boundary are presented. The fluid occupies a semi-infinite strip bounded by the free surface (from above) and (from the sides) by two solid vertical walls approaching each other with a constant velocity. The solutions are obtained for a situation where the capillary and gravity forces are absent, and the fluid motion is completely determined by the motion of the walls. The solutions contain an arbitrary function, which allows one to describe the nonlinear evolution of perturbations of an arbitrary shape for an initially flat horizontal surface of the fluid. Examples of exact solutions corresponding to the formation of bubbles, cuspidal points, and droplets are considered.
A new measuring technique dedicated to bubble velocity and size measurements in complex bubbly flows such as those occurring in bubble columns is proposed. This sensor combines the phase detection capability of a conical optical fiber, with velocity measurements from the Doppler signal induced by an interface approaching the extremity of a single-mode fiber. The analysis of the probe functioning and of its response in controlled situations, have shown that the Doppler probe provides the translation velocity of bubbles projected along the probe axis. A reliable signal processing routine has been developed that exploits the Doppler signal arising at the gas-to-liquid transition: the resulting uncertainty on velocity is at most 14%. Such a Doppler probe provides statistics on velocity and on size of gas inclusions, as well as local variables including void fraction, gas volumetric flux, number density and its flux. That sensor has been successfully exploited in an air-tap water bubble column 0.4m in diameter for global gas hold-up from 2.5 to 30%. In the heterogeneous regime, the transverse profiles of the mean bubble velocity scaled by the value on the axis happen to be self-similar in the quasi fully developed region of the column. A fit is proposed for these profiles. In addition, on the axis, the standard deviation of bubble velocity scaled by the mean velocity increases with Vsg in the homogeneous regime, and it remains stable, close to 0.55, in the heterogeneous regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا