Recent Trends in Food Intake Monitoring using Wearable Sensors


Abstract in English

Obesity and being over-weight add to the risk of some major life threatening diseases. According to W.H.O., a considerable population suffers from these disease whereas poor nutrition plays an important role in this context. Traditional food activity monitoring systems like Food Diaries allow manual record keeping of eating activities over time, and conduct nutrition analysis. However, these systems are prone to the problems of manual record keeping and biased-reporting. Therefore, recently, the research community has focused on designing automatic food monitoring systems since the last decade which consist of one or multiple wearable sensors. These systems aim at providing different macro and micro activity detections like chewing, swallowing, eating episodes, and food types as well as estimations like food mass and eating duration. Researchers have emphasized on high detection accuracy, low estimation errors, un-intrusive nature, low cost and real life implementation while designing these systems, however a comprehensive automatic food monitoring system has yet not been developed. Moreover, according to the best of our knowledge, there is no comprehensive survey in this field that delineates the automatic food monitoring paradigm, covers a handful number of research studies, analyses these studies against food intake monitoring tasks using various parameters, enlists the limitations and sets up future directions. In this research work, we delineate the automatic food intake monitoring paradigm and present a survey of research studies. With special focus on studies with wearable sensors, we analyze these studies against food activity monitoring tasks. We provide brief comparison of these studies along with shortcomings based upon experimentation results conducted under these studies. We setup future directions at the end to facilitate the researchers working in this domain.

Download