Do you want to publish a course? Click here

Learned Multi-Resolution Variable-Rate Image Compression with Octave-based Residual Blocks

102   0   0.0 ( 0 )
 Added by Mohammad Akbari
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently deep learning-based image compression has shown the potential to outperform traditional codecs. However, most existing methods train multiple networks for multiple bit rates, which increase the implementation complexity. In this paper, we propose a new variable-rate image compression framework, which employs generalized octave convolutions (GoConv) and generalized octave transposed-convolutions (GoTConv) with built-in generalized divisive normalization (GDN) and inverse GDN (IGDN) layers. Novel GoConv- and GoTConv-based residual blocks are also developed in the encoder and decoder networks. Our scheme also uses a stochastic rounding-based scalar quantization. To further improve the performance, we encode the residual between the input and the reconstructed image from the decoder network as an enhancement layer. To enable a single model to operate with different bit rates and to learn multi-rate image features, a new objective function is introduced. Experimental results show that the proposed framework trained with variable-rate objective function outperforms the standard codecs such as H.265/HEVC-based BPG and state-of-the-art learning-based variable-rate methods.



rate research

Read More

In this proposal, we design a learned multi-frequency image compression approach that uses generalized octave convolutions to factorize the latent representations into high-frequency (HF) and low-frequency (LF) components, and the LF components have lower resolution than HF components, which can improve the rate-distortion performance, similar to wavelet transform. Moreover, compared to the original octave convolution, the proposed generalized octave convolution (GoConv) and octave transposed-convolution (GoTConv) with internal activation layers preserve more spatial structure of the information, and enable more effective filtering between the HF and LF components, which further improve the performance. In addition, we develop a variable-rate scheme using the Lagrangian parameter to modulate all the internal feature maps in the auto-encoder, which allows the scheme to achieve the large bitrate range of the JPEG AI with only three models. Experiments show that the proposed scheme achieves much better Y MS-SSIM than VVC. In terms of YUV PSNR, our scheme is very similar to HEVC.
A large fraction of Internet traffic is now driven by requests from mobile devices with relatively small screens and often stringent bandwidth requirements. Due to these factors, it has become the norm for modern graphics-heavy websites to transmit low-resolution, low-bytecount image previews (thumbnails) as part of the initial page load process to improve apparent page responsiveness. Increasing thumbnail compression beyond the capabilities of existing codecs is therefore a current research focus, as any byte savings will significantly enhance the experience of mobile device users. Toward this end, we propose a general framework for variable-rate image compression and a novel architecture based on convolutional and deconvolutional LSTM recurrent networks. Our models address the main issues that have prevented autoencoder neural networks from competing with existing image compression algorithms: (1) our networks only need to be trained once (not per-image), regardless of input image dimensions and the desired compression rate; (2) our networks are progressive, meaning that the more bits are sent, the more accurate the image reconstruction; and (3) the proposed architecture is at least as efficient as a standard purpose-trained autoencoder for a given number of bits. On a large-scale benchmark of 32$times$32 thumbnails, our LSTM-based approaches provide better visual quality than (headerless) JPEG, JPEG2000 and WebP, with a storage size that is reduced by 10% or more.
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution. Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets), which typically consist of three steps: (1) up-sampling the LR-HSI, (2) predicting the residual image via a ConvNet, and (3) obtaining the final fused HSI by adding the outputs from first and second steps. Recent methods have leveraged Deep Image Prior (DIP) to up-sample the LR-HSI due to its excellent ability to preserve both spatial and spectral information, without learning from large data sets. However, we observed that the quality of up-sampled HSIs can be further improved by introducing an additional spatial-domain constraint to the conventional spectral-domain energy function. We define our spatial-domain constraint as the $L_1$ distance between the predicted PAN image and the actual PAN image. To estimate the PAN image of the up-sampled HSI, we also propose a learnable spectral response function (SRF). Moreover, we noticed that the residual image between the up-sampled HSI and the reference HSI mainly consists of edge information and very fine structures. In order to accurately estimate fine information, we propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers. We perform experiments on three HSI datasets to demonstrate the superiority of our DIP-HyperKite over the state-of-the-art pansharpening methods. The deployment codes, pre-trained models, and final fusion outputs of our DIP-HyperKite and the methods used for the comparisons will be publicly made available at https://github.com/wgcban/DIP-HyperKite.git.
73 - Xiao Wang , Wei Jiang , Wei Wang 2021
We describe Substitutional Neural Image Compression (SNIC), a general approach for enhancing any neural image compression model, that requires no data or additional tuning of the trained model. It boosts compression performance toward a flexible distortion metric and enables bit-rate control using a single model instance. The key idea is to replace the image to be compressed with a substitutional one that outperforms the original one in a desired way. Finding such a substitute is inherently difficult for conventional codecs, yet surprisingly favorable for neural compression models thanks to their fully differentiable structures. With gradients of a particular loss backpropogated to the input, a desired substitute can be efficiently crafted iteratively. We demonstrate the effectiveness of SNIC, when combined with various neural compression models and target metrics, in improving compression quality and performing bit-rate control measured by rate-distortion curves. Empirical results of control precision and generation speed are also discussed.
We present a learned image compression system based on GANs, operating at extremely low bitrates. Our proposed framework combines an encoder, decoder/generator and a multi-scale discriminator, which we train jointly for a generative learned compression objective. The model synthesizes details it cannot afford to store, obtaining visually pleasing results at bitrates where previous methods fail and show strong artifacts. Furthermore, if a semantic label map of the original image is available, our method can fully synthesize unimportant regions in the decoded image such as streets and trees from the label map, proportionally reducing the storage cost. A user study confirms that for low bitrates, our approach is preferred to state-of-the-art methods, even when they use more than double the bits.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا