Transverse Coupled Cavity VCSEL: Making 100 GHz Bandwidth Achievable


Abstract in English

Enhancing the modulation bandwidth (MBW) of semiconductor lasers has been the challenge of research and technology to meet the need of high-speed photonic applications. In this paper, we propose the design of vertical-cavity surface-emitting laser integrated with multiple transverse coupled cavities (MTCCs) as a promising device with ultra-high 3-dB bandwidth. The laser features high modulation performance because of the accumulated strong coupling of the slow-light feedback from the surrounding lateral TCCs into the VCSEL cavity. Photon-photon resonance (PPR) is predicted to occur at ultra-high frequencies exceeding 145 GHz due to the optical feedback from short TCCs, which achieves 3-dB MBW reaching 170 GHz. The study is based on the modeling of the VCSEL dynamics under multiple transverse slow-light feedback from the surrounding TCCs. We show that the integration of the VCSEL with four or six feedback cavities is advantageous over the TCC-VCSEL in achieving much higher MBW enhancement under weaker coupling of slow-light into the VCSEL cavity. We also characterize the noise properties of the promising MTCC-VCSEL in the regime of ultra-high bandwidth in terms of the Fourier spectrum of the relative intensity noise (RIN).

Download