Do you want to publish a course? Click here

Vertical Structure and Color of Jovian Latitudinal Cloud Bands during the Juno Era

119   0   0.0 ( 0 )
 Added by Emma Dahl
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The identity of the coloring agent(s) in Jupiters atmosphere and the exact structure of Jupiters uppermost cloud deck are yet to be conclusively understood. The Cr`{e}me Br^ulee model of Jupiters tropospheric clouds, originally proposed by Baines et al. (2014) and expanded upon by Sromovsky et al. (2017) and Baines et al. (2019), presumes that the chromophore measured by Carlson et al. (2016) is the singular coloring agent in Jupiters troposphere. In this work, we test the validity of the Cr`{e}me Br^ulee model of Jupiters uppermost cloud deck using spectra measured during the Juno spacecrafts 5$^{mathrm{th}}$ perijove pass in March 2017. These data were obtained as part of an international ground-based observing campaign in support of the Juno mission using the NMSU Acousto-optic Imaging Camera (NAIC) at the 3.5-m telescope at Apache Point Observatory in Sunspot, NM. We find that the Cr`{e}me Br^ulee model cloud layering scheme can reproduce Jupiters visible spectrum both with the Carlson et al. (2016) chromophore and with modifications to its imaginary index of refraction spectrum. While the Cr`{e}me Br^ulee model provides reasonable results for regions of Jupiters cloud bands such as the North Equatorial Belt and Equatorial Zone, we find that it is not a safe assumption for unique weather events, such as the 2016-2017 Southern Equatorial Belt outbreak that was captured by our measurements.

rate research

Read More

Mid-infrared 7-20 $mu$m imaging of Jupiter demonstrates that the increased albedo of Jupiters South Equatorial Belt (SEB) during the `fade (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB ($7-17^circ$ S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool quiescent band of high aerosol opacity (the SEB zone at $11-15^circ$ S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of $1.0pm0.5$ K), as well as the increased aerosol opacity at 4.8 and 8.6 $mu$m, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free `brown barges (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles from deeper levels (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air. [Abridged]
In 2016, the NASA Juno spacecraft will initiate its one-year mission around Jupiter and become the first probe to explore the polar regions of Jupiter. The HST UV instruments (STIS and ACS) can greatly contribute to the success of the Juno mission by providing key complementary views of Jupiters UV aurora from Earth orbit. Juno carries an ultraviolet Spectrograph (UVS) and an infrared spectral mapper (JIRAM) that will obtain high-resolution spectral images providing the auroral counterpart to Junos in situ particles and fields measurements with the plasma JADE and JEDI particle detectors. The Juno mission will be the first opportunity to measure simultaneously the energetic particles at high latitude and the auroral emissions they produce. Following programmatic and technical limitations, the amount of UVS data transmitted to Earth will be severely restricted. Therefore, it is of extreme importance that HST captures as much additional information as possible on Jupiters UV aurora during the one-year life of the Juno mission. This white paper is a plea for a Juno initiative that will ensure that a sufficient number of orbits is allocated to this unique solar system mission.
Cassini/ISS imagery and Cassini/VIMS spectral imaging observations from 0.35 to 5.12 microns show that between 2012 and 2017 the region poleward of the Saturns northern hexagon changed from dark blue/green to a moderately brighter gold color, except for the inner eye region (88.2 deg - 90 deg N), which remained relatively unchanged. These and even more dramatic near-IR changes can be reproduced by an aerosol model of four compact layers consisting of a stratospheric haze at an effective pressure near 50 mbar, a deeper haze of putative diphosphine particles typically near 300 mbar, an ammonia cloud layer with a base pressure between 0.4 bar and 1.3 bar, and a deeper cloud of a possible mix of NH4SH and water ice particles within the 2.7 to 4.5 bar region. Our analysis of the background clouds between the discrete features shows that between 2013 and 2016 the effective pressures of most layers changed very little, except for the ammonia ice layer, which decreased from about 1 bar to 0.4 bar near the edge of the eye, but increased to 1 bar inside the eye. Inside the hexagon there were large increases in optical depth, by up to a factor of 10 near the eye for the putative diphosphine layer and by a factor of four over most of the hexagon interior. Inside the eye, aerosol optical depths were very low, suggesting downwelling motions. The high contrast between eye and surroundings in 2016 was due to substantial increases in optical depths outside the eye. The color change from blue/green to gold inside most of the hexagon region can be explained in our model almost entirely by changes in the stratospheric haze, which increased between 2013 and 2016 by a factor of four in optical depth and by almost a factor of three in the short-wavelength peak imaginary index.
Goldstone Apple Valley Radio Telescope (GAVRT) is a science education partnership among NASA, the Jet Propulsion Laboratory (JPL), and the Lewis Center for Educational Research (LCER), offering unique opportunities for K -12 students and their teachers. As part of a long-term Jupiter synchrotron radiation (JSR) flux density monitoring program, LCER has been carrying out Jupiter observations with some student participation. In this paper we present the results of processed data sets observed between March 6, 2015 and April 6 2018. The data are divided into 5 epochs, grouped by time. We derive JSR beaming curves at different epochs and Earth declinations. We present a comparison of the observed beaming curves with those derived from most recent models for the radiation belts. Our results show an increasing trend of the JSR flux density which seem consistent with the models for the magnetospheric solar wind interactions.
Rotational modulations of emission spectra in brown dwarf and exoplanet atmospheres show that clouds are often distributed non-uniformly in these ultracool atmospheres. The spatial heterogeneity in cloud distribution demonstrates the impact of atmospheric dynamics on cloud formation and evolution. In this study, we update the Hubble Space Telescope (HST) time-series data analysis of the previously reported rotational modulations of WISEP J004701+680352 -- an unusually red late-L brown dwarf with a spectrum similar to that of the directly imaged planet HR8799e. We construct a self-consistent spatially heterogeneous cloud model to explain the Hubble Space Telescope and the Spitzer time-series observations, as well as the time-averaged spectra of WISE0047. In the heterogeneous cloud model, a cloud thickness variation of around one pressure scale height explains the wavelength dependence in the HST near-IR spectral variability. By including disequilibrium CO/$CH_4$ chemistry, our models also reproduce the redder $J-K_{rm s}$ color of WISE0047 compared to that of field brown dwarfs. We discuss the impact of vertical cloud structure on atmospheric profile and estimate the minimum eddy diffusivity coefficient for other objects with redder colors. Our data analysis and forward modeling results demonstrate that time-series spectrophotometry with a broad wavelength coverage is a powerful tool for constraining heterogeneous atmospheric structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا