No Arabic abstract
More than two hundred supermassive black holes (SMBHs) of masses $gtrsim 10^9,mathrm{M_{odot}}$ have been discovered at $z gtrsim 6$. One promising pathway for the formation of SMBHs is through the collapse of supermassive stars (SMSs) with masses $sim 10^{3-5},mathrm{M_{odot}}$ into seed black holes which could grow upto few times $10^9,mathrm{M_{odot}}$ SMBHs observed at $zsim 7$. In this paper, we explore how SMSs with masses $sim 10^{3-5},mathrm{M_{odot}}$ could be formed via gas accretion and runaway stellar collisions in high-redshift, metal-poor nuclear star clusters (NSCs) using idealised N-body simulations. We explore physically motivated accretion scenarios, e.g. Bondi-Hoyle-Lyttleton accretion and Eddington accretion, as well as simplified scenarios such as constant accretions. While gas is present, the accretion timescale remains considerably shorter than the timescale for collisions with the most massive object (MMO). However, overall the timescale for collisions between any two stars in the cluster can become comparable or shorter than the accretion timescale, hence collisions still play a crucial role in determining the final mass of the SMSs. We find that the problem is highly sensitive to the initial conditions and our assumed recipe for the accretion, due to the highly chaotic nature of the problem. The key variables that determine the mass growth mechanism are the mass of the MMO and the gas reservoir that is available for the accretion. Depending on different conditions, SMSs of masses $sim10^{3-5} ,mathrm{M_{odot}}$ can form for all three accretion scenarios considered in this work.
The observations of high redshifts quasars at $zgtrsim 6$ have revealed that supermassive black holes (SMBHs) of mass $sim 10^9,mathrm{M_{odot}}$ were already in place within the first $sim$ Gyr after the Big Bang. Supermassive stars (SMSs) with masses $10^{3-5},mathrm{M_{odot}}$ are potential seeds for these observed SMBHs. A possible formation channel of these SMSs is the interplay of gas accretion and runaway stellar collisions inside dense nuclear star clusters (NSCs). However, mass loss due to stellar winds could be an important limitation for the formation of the SMSs and affect the final mass. In this paper, we study the effect of mass loss driven by stellar winds on the formation and evolution of SMSs in dense NSCs using idealised N-body simulations. Considering different accretion scenarios, we have studied the effect of the mass loss rates over a wide range of metallicities $Z_ast=[.001-1]mathrm{Z_{odot}}$ and Eddington factors $f_{rm Edd}=L_ast/L_{mathrm{Edd}}=0.5,0.7,,&, 0.9$. For a high accretion rate of $10^{-4},mathrm{M_{odot}yr^{-1}}$, SMSs with masses $gtrsim 10^3MSun$ could be formed even in a high metallicity environment. For a lower accretion rate of $10^{-5},mathrm{M_{odot}yr^{-1}}$, SMSs of masses $sim 10^{3-4},mathrm{M_{odot}}$ can be formed for all adopted values of $Z_ast$ and $f_{rm Edd}$, except for $Z_ast=mathrm{Z_{odot}}$ and $f_{rm Edd}=0.7$ or 0.9. For Eddington accretion, SMSs of masses $sim 10^3,mathrm{M_{odot}}$ can be formed in low metallicity environments with $Z_astlesssim 0.01mathrm{Z_{odot}}$. The most massive SMSs of masses $sim 10^5,mathrm{M_{odot}}$ can be formed for Bondi-Hoyle accretion in environments with $Z_ast lesssim 0.5mathrm{Z_{odot}}$.
We present a study of the star formation and central black hole accretion activity of the galaxies hosted in the two nearby (z$sim$0.2) rich galaxy clusters Abell 983 and 1731. Aims: We are able to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy @ 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations ($sim$ 3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star forming members of the two clusters present star formation rates comparable with those measured in coeval field galaxies. The analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with respect to the more uniform distribution of A983. The emerging picture is compatible with A983 being a fully evolved cluster, in contrast with the still actively accreting A1731. Conclusions: The analysis of the specific star formation rate reveals evidence of on-going galaxy pre-processing along A1731s filament-like structure. Furthermore, the decrease in the number of star forming galaxies and AGN towards the cluster cores suggests that the cluster environment is accelerating the ageing process of galaxies and blocking further accretion of the cold gas that fuels both star formation and black hole accretion activity.
Numerical models of gas inflow towards a supermassive black hole (SMBH) show that star formation may occur in such an environment through the growth of a gravitationally unstable gas disc. We consider the effect of nuclear activity on such a scenario. We present the first three-dimensional grid-based radiative hydrodynamic simulations of direct collisions between infalling gas streams and a $4 times 10^6~text{M}_odot$ SMBH, using ray-tracing to incorporate radiation consistent with an active galactic nucleus (AGN). We assume inflow masses of $ approx 10^5~text{M}_odot$ and explore radiation fields of 10% and 100% of the Eddington luminosity ($L_text{edd}$). We follow our models to the point of central gas disc formation preceding star formation and use the Toomre Q parameter ($Q_T$) to test for gravitational instability. We find that radiation pressure from UV photons inhibits inflow. Yet, for weak radiation fields, a central disc forms on timescales similar to that of models without feedback. Average densities of $> 10^{8}~text{cm}^{-3}$ limit photo-heating to the disc surface allowing for $Q_Tapprox1$. For strong radiation fields, the disc forms more gradually resulting in lower surface densities and larger $Q_T$ values. Mass accretion rates in our models are consistent with 1%--60% of the Eddington limit, thus we conclude that it is unlikely that radiative feedback from AGN activity would inhibit circumnuclear star formation arising from a massive inflow event.
To explain the observed population of supermassive black holes at z~7, very massive seed black holes or, alternatively, super-Eddington scenarios are needed to reach final masses of the order of 10^9 solar masses. A popular explanation for massive seeds has been the direct collapse model, which predicts the formation of a single massive object due to the direct collapse of a massive gas cloud. Simulations over the last years have however shown that such a scenario is very difficult to achieve. A realistic model of black hole formation should therefore take fragmentation into account, and consider the interaction between stellar-dynamical and gas-dynamical processes. We present here numerical simulations pursued with the AMUSE code, employing an approximate treatment of the gas. Based on these simulations, we show that very massive black holes of 10^4-10^5 solar masses may form depending on the gas supply and the accretion onto the protostars.
Cosmological simulations, as well as mounting evidence from observations, have shown that supermassive black holes play a fundamental role in regulating the formation of stars throughout cosmic time. This has been clearly demonstrated in the case of galaxy clusters in which powerful feedback from the central black hole is preventing the hot intracluster gas from cooling catastrophically, thus reducing the expected star formation rates by orders of magnitude. These conclusions have however been almost entirely based on nearby clusters. Based on new Chandra X-ray observations, we present the first observational evidence for massive, runaway cooling occurring in the absence of supermassive black hole feedback in the high-redshift galaxy cluster SpARCS104922.6+564032.5 ($z=1.709$). The hot intracluster gas appears to be fueling a massive burst of star formation ($approx900$~M$_odot$yr$^{-1}$) that is offset by dozens of kpc from the central galaxy. The burst is co-spatial with the coolest intracluster gas but not associated with any galaxy in the cluster. In less than 100 million years, such runaway cooling can form the same amount of stars as in the Milky Way. Intracluster stars are therefore not only produced by tidal stripping and the disruption of cluster galaxies, but can also be produced by runaway cooling of hot intracluster gas at early times. Overall, these observations show the dramatic impact when supermassive black hole feedback fails to operate in clusters. They indicate that in the highest overdensities such as clusters and proto-clusters, runaway cooling may be a new and important mechanism for fueling massive bursts of star formation in the early universe.