Do you want to publish a course? Click here

The 4-Adic Complexity of A Class of Quaternary Cyclotomic Sequences with Period 2p

425   0   0.0 ( 0 )
 Added by Minghui Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In cryptography, we hope a sequence over $mathbb{Z}_m$ with period $N$ having larger $m$-adic complexity. Compared with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper, we determine the 4-adic complexity of the quaternary cyclotomic sequences with period 2$p$ defined in [6]. The main method we utilized is a quadratic Gauss sum $G_{p}$ valued in $mathbb{Z}_{4^N-1}$ which can be seen as a version of classical quadratic Gauss sum. Our results show that the 4-adic complexity of this class of quaternary cyclotomic sequences reaches the maximum if $5 mid p-2$ and close to the maximum otherwise.

rate research

Read More

In this paper, we determine the 4-adic complexity of the balanced quaternary sequences of period $2p$ and $2(2^n-1)$ with ideal autocorrelation defined by Kim et al. (ISIT, pp. 282-285, 2009) and Jang et al. (ISIT, pp. 278-281, 2009), respectively. Our results show that the 4-adic complexity of the quaternary sequences defined in these two papers is large enough to resist the attack of the rational approximation algorithm.
Via interleaving Ding-Helleseth-Lam sequences, a class of binary sequences of period $4p$ with optimal autocorrelation magnitude was constructed in cite{W. Su}. Later, Fan showed that the linear complexity of this class of sequences is quite good cite{C. Fan}. Recently, Sun et al. determined the upper and lower bounds of the 2-adic complexity of such sequences cite{Y. Sun3}. We determine the exact value of the 2-adic complexity of this class of sequences. The results show that the 2-adic complexity of this class of binary sequences is close to the maximum.
A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${mathbb{F}_{{q}}}$ as well as 2-adic complexity are determined using Gauss period and group ring theory. The results show that the linear complexity of these sequences attains the maximum when $pequiv pm 1(bmod~8)$ and is equal to {$p$+1} when $pequiv pm 3(bmod~8)$ over extension field. Moreover, the 2-adic complexity of these sequences is maximum. According to Berlekamp-Massey(B-M) algorithm and the rational approximation algorithm(RAA), these sequences have quite good cryptographyic properties in the aspect of linear complexity and 2-adic complexity.
The generalized cyclotomic binary sequences $S=S(a, b, c)$ with period $n=pq$ have good autocorrelation property where $(a, b, c)in {0, 1}^3$ and $p, q$ are distinct odd primes. For some cases, the sequences $S$ have ideal or optimal autocorrelation. In this paper we determine the autocorrelation distribution and 2-adic complexity of the sequences $S=S(a, b, c)$ for all $(a, b, c)in {0, 1}^3$ in a unified way by using group ring language and a version of quadratic Gauss sums valued in group ring $R=mathbb{Z}[Gamma]$ where $Gamma$ is a cyclic group of order $n$.
The autocorrelation values of two classes of binary sequences are shown to be good in [6]. We study the 2-adic complexity of these sequences. Our results show that the 2-adic complexity of such sequences is large enough to resist the attack of the rational approximation algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا