Do you want to publish a course? Click here

Accurate and Rapid Diagnosis of COVID-19 Pneumonia with Batch Effect Removal of Chest CT-Scans and Interpretable Artificial Intelligence

74   0   0.0 ( 0 )
 Added by Hamed Dashti
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

COVID-19 is a virus with high transmission rate that demands rapid identification of the infected patients to reduce the spread of the disease. The current gold-standard test, Reverse-Transcription Polymerase Chain Reaction (RT-PCR), has a high rate of false negatives. Diagnosing from CT-scan images as a more accurate alternative has the challenge of distinguishing COVID-19 from other pneumonia diseases. Artificial intelligence can help radiologists and physicians to accelerate the process of diagnosis, increase its accuracy, and measure the severity of the disease. We designed a new interpretable deep neural network to distinguish healthy people, patients with COVID-19, and patients with other pneumonia diseases from axial lung CT-scan images. Our model also detects the infected areas and calculates the percentage of the infected lung volume. We first preprocessed the images to eliminate the batch effects of different devices, and then adopted a weakly supervised method to train the model without having any tags for the infected parts. We trained and evaluated the model on a large dataset of 3359 samples from 6 different medical centers. The model reached sensitivities of 97.75% and 98.15%, and specificities of 87% and 81.03% in separating healthy people from the diseased and COVID-19 from other diseases, respectively. It also demonstrated similar performance for 1435 samples from 6 different medical centers which proves its generalizability. The performance of the model on a large diverse dataset, its generalizability, and interpretability makes it suitable to be used as a reliable diagnostic system.



rate research

Read More

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has rapidly spread into a global pandemic. A form of pneumonia, presenting as opacities with in a patients lungs, is the most common presentation associated with this virus, and great attention has gone into how these changes relate to patient morbidity and mortality. In this work we provide open source models for the segmentation of patterns of pulmonary opacification on chest Computed Tomography (CT) scans which have been correlated with various stages and severities of infection. We have collected 663 chest CT scans of COVID-19 patients from healthcare centers around the world, and created pixel wise segmentation labels for nearly 25,000 slices that segment 6 different patterns of pulmonary opacification. We provide open source implementations and pre-trained weights for multiple segmentation models trained on our dataset. Our best model achieves an opacity Intersection-Over-Union score of 0.76 on our test set, demonstrates successful domain adaptation, and predicts the volume of opacification within 1.7% of expert radiologists. Additionally, we present an analysis of the inter-observer variability inherent to this task, and propose methods for appropriate probabilistic approaches.
112 - Haibo Qi , Yuhan Wang , Xinyu Liu 2021
In this paper, a 3D-RegNet-based neural network is proposed for diagnosing the physical condition of patients with coronavirus (Covid-19) infection. In the application of clinical medicine, lung CT images are utilized by practitioners to determine whether a patient is infected with coronavirus. However, there are some laybacks can be considered regarding to this diagnostic method, such as time consuming and low accuracy. As a relatively large organ of human body, important spatial features would be lost if the lungs were diagnosed utilizing two dimensional slice image. Therefore, in this paper, a deep learning model with 3D image was designed. The 3D image as input data was comprised of two-dimensional pulmonary image sequence and from which relevant coronavirus infection 3D features were extracted and classified. The results show that the test set of the 3D model, the result: f1 score of 0.8379 and AUC value of 0.8807 have been achieved.
The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has led to a global emergency that has significantly impacted economies, healthcare systems and personal wellbeing all around the world. Controlling the rapidly evolving disease requires highly sensitive and specific diagnostics. While real-time RT-PCR is the most commonly used, these can take up to 8 hours, and require significant effort from healthcare professionals. As such, there is a critical need for a quick and automatic diagnostic system. Diagnosis from chest CT images is a promising direction. However, current studies are limited by the lack of sufficient training samples, as acquiring annotated CT images is time-consuming. To this end, we propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training. Specifically, we use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets and adopt the prototypical network for classification. We validate the efficacy of the proposed model in comparison with other competing methods on two publicly available and annotated COVID-19 CT datasets. Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. As of Aug 25th of 2020, more than 20 million people are infected, and more than 800,000 death are reported. Computed Tomography (CT) images can be used as a as an alternative to the time-consuming reverse transcription polymerase chain reaction (RT-PCR) test, to detect COVID-19. In this work we developed a deep learning framework to predict COVID-19 from CT images. We propose to use an attentional convolution network, which can focus on the infected areas of chest, enabling it to perform a more accurate prediction. We trained our model on a dataset of more than 2000 CT images, and report its performance in terms of various popular metrics, such as sensitivity, specificity, area under the curve, and also precision-recall curve, and achieve very promising results. We also provide a visualization of the attention maps of the model for several test images, and show that our model is attending to the infected regions as intended. In addition to developing a machine learning modeling framework, we also provide the manual annotation of the potentionally infected regions of chest, with the help of a board-certified radiologist, and make that publicly available for other researchers.
Purpose: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations. Materials and Methods: In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning. The first measure of (PO, PHO) is global, while the second of (LSS, LHOS) is lobewise. Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States collected between 2002-Present (April, 2020). Ground truth is established by manual annotations of lesions, lungs, and lobes. Correlation and regression analyses were performed to compare the prediction to the ground truth. Results: Pearson correlation coefficient between method prediction and ground truth for COVID-19 cases was calculated as 0.92 for PO (P < .001), 0.97 for PHO(P < .001), 0.91 for LSS (P < .001), 0.90 for LHOS (P < .001). 98 of 100 healthy controls had a predicted PO of less than 1%, 2 had between 1-2%. Automated processing time to compute the severity scores was 10 seconds per case compared to 30 minutes required for manual annotations. Conclusion: A new method segments regions of CT abnormalities associated with COVID-19 and computes (PO, PHO), as well as (LSS, LHOS) severity scores.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا