We explain the notion of $q$-deformed real numbers introduced in our previous work and overview their main properties. We will also introduce $q$-deformed Conway-Coxeter friezes.
We associate a formal power series with integer coefficients to a positive real number, we interpret this series as a $q$-analogue of a real. The construction is based on the notion of $q$-deformed rational number introduced in arXiv:1812.00170. Extending the construction to negative real numbers, we obtain certain Laurent series.
We study analytic properties of $q$-deformed real numbers, a notion recently introduced by two of us. A $q$-deformed positive real number is a power series with integer coefficients in one formal variable~$q$. We study the radius of convergence of these power series assuming that $q in C.$ Our main conjecture, which can be viewed as a $q$-analogue of Hurwitzs Irrational Number Theorem, provides a lower bound for these radii, given by the radius of convergence of the $q$-deformed golden ratio. The conjecture is proved in several particular cases and confirmed by a number of computer experiments. For an interesting sequence of Pell polynomials, we obtain stronger bounds.
This work is a first step towards a theory of $q$-deformed complex numbers. Assuming the invariance of the $q$-deformation under the action of the modular group I prove the existence and uniqueness of the operator of translations by~$i$ compatible with this action. Obtained in such a way $q$-deformed Gaussian integers have interesting properties and are related to the Chebyshev polynomials.
The notion of $SL_2$-tiling is a generalization of that of classical Coxeter-Conway frieze pattern. We classify doubly antiperiodic $SL_2$-tilings that contain a rectangular domain of positive integers. Every such $SL_2$-tiling corresponds to a pair of frieze patterns and a unimodular $2times2$-matrix with positive integer coefficients. We relate this notion to triangulated $n$-gons in the Farey graph.
We define the quantum group $D_4^+$ -- a free quantum version of the demihyperoctahedral group $D_4$ (the smallest representative of the Coxeter series $D$). In order to do so, we construct a free analogue of the property that a $4times4$ matrix has determinant one. Such analogues of determinants are usually very hard to define for free quantum groups in general and our result only holds for the matrix size $N=4$. The free $D_4^+$ is then defined by imposing this generalized determinant condition on the free hyperoctahedral group $H_4^+$. Moreover, we give a detailed combinatorial description of the representation category of $D_4^+$.