Do you want to publish a course? Click here

A Plucker coordinate mirror for type A flag varieties

94   0   0.0 ( 0 )
 Added by Elana Kalashnikov
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a superpotential for partial flag varieties of type $A$. This is a map $W: Y^circ to mathbb{C}$, where $Y^circ$ is the complement of an anticanonical divisor on a product of Grassmannians. The map $W$ is expressed in terms of Plucker coordinates of the Grassmannian factors. This construction generalizes the Marsh--Rietsch Plucker coordinate mirror for Grassmannians. We show that in a distinguished cluster chart for $Y$, our superpotential agrees with earlier mirrors constructed by Eguchi--Hori--Xiong and Batyrev--Ciocan-Fontanine--Kim--van Straten. Our main tool is quantum Schubert calculus on the flag variety.



rate research

Read More

152 - Wei Gu , Elana Kalashnikov 2020
The rim-hook rule for quantum cohomology of the Grassmannian allows one to reduce quantum calculations to classical calculations in the cohomology of the Grassmannian. We use the Abelian/non-Abelian correspondence for cohomology to prove a rim-hook removal rule for the cohomology of quiver flag varieties. Quiver flag varieties are generalisations of type A flag varieties; this result is new even in the flag case. This gives an effective way of computing products in their cohomology, reducing computations to that in the cohomology ring of the Grassmannian. We then prove a quantum rim-hook rule for Fano quiver flag varieties (including type A flag varieties). As a corollary, we see that the Gu--Sharpe mirror to a Fano quiver flag variety computes its quantum cohomology.
This paper studies affine Deligne-Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, extends previous conjectures concerning their dimensions, and generalizes the superset method.
368 - Rong Du , Xinyi Fang , Yun Gao 2019
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an algebraically closed field of characteristic $p>0$. Let $E$ be a uniform vector bundle over $G$ of rank $rle d$. We show that $E$ is either a direct sum of line bundles or a twist of a pull back of the universal bundle $H_d$ or its dual $H_d^{vee}$ by a series of absolute Frobenius maps. In the second part, splitting properties of vector bundles on general flag varieties $F(d_1,cdots,d_s)$ in characteristic zero are considered. We prove a structure theorem for bundles over flag varieties which are uniform with respect to the $i$-th component of the manifold of lines in $F(d_1,cdots,d_s)$. Furthermore, we generalize the Grauert-M$ddot{text{u}}$lich-Barth theorem to flag varieties. As a corollary, we show that any strongly uniform $i$-semistable $(1le ile n-1)$ bundle over the complete flag variety splits as a direct sum of special line bundles.
Based on the Brieskorn-Slodowy-Grothendieck diagram, we write the holomorphic structures (or filtrations) of the ADE Lie algebra bundles over the corresponding type ADE flag varieties, over the cotangent bundles of these flag varieties, and over the corresponding type $ADE$ singular surfaces. The main tool is the cohomology of line bundles over flag varieties and their cotangent bundles.
I construct a correspondence between the Schubert cycles on the variety of complete flags in C^n and some faces of the Gelfand-Zetlin polytope associated with the irreducible representation of SL_n(C) with a strictly dominant highest weight. The construction is based on a geometric presentation of Schubert cells by Bernstein-Gelfand-Gelfand using Demazure modules. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand-Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا