Do you want to publish a course? Click here

Hot carrier-assisted switching of the electron-phonon interaction in 1$T$-VSe$_2$

91   0   0.0 ( 0 )
 Added by S{\\o}ren Ulstrup
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply an intense infrared laser pulse in order to perturb the electronic and vibrational states in the three-dimensional charge density wave material 1$T$-VSe$_2$. Ultrafast snapshots of the light-induced hot carrier dynamics and non-equilibrium quasiparticle spectral function are collected using time- and angle-resolved photoemission spectroscopy. The hot carrier temperature and time-dependent electronic self-energy are extracted from the time-dependent spectral function, revealing that incoherent electron-phonon interactions heat the lattice above the charge density wave critical temperature on a timescale of $(200 pm 40)$~fs. Density functional perturbation theory calculations establish that the presence of hot carriers alters the overall phonon dispersion and quenches efficient low-energy acoustic phonon scattering channels, which results in a new quasi-equilibrium state that is experimentally observed.



rate research

Read More

We present a first-principles investigation of the phonon-induced electron self-energy in graphene. The energy dependence of the self-energy reflects the peculiar linear bandstructure of graphene and deviates substantially from the usual metallic behavior. The effective band velocity of the Dirac fermions is found to be reduced by 4-8%, depending on doping, by the interaction with lattice vibrations. Our results are consistent with the observed linear dependence of the electronic linewidth on the binding energy in photoemission spectra.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
228 - Richard Wilson , Sinisa Coh 2019
Understanding how photoexcited electron dynamics depend on electron-electron (e-e) and electron-phonon (e-p) interaction strengths is important for many fields, e.g. ultrafast magnetism, photocatalysis, plasmonics, and others. Here, we report simple expressions that capture the interplay of e-e and e-p interactions on electron distribution relaxation times. We observe a dependence of the dynamics on e-e and e-p interaction strengths that is universal to most metals and is also counterintuitive. While only e-p interactions reduce the total energy stored by excited electrons, the time for energy to leave the electronic subsystem also depends on e-e interaction strengths because e-e interactions increase the number of electrons emitting phonons. The effect of e-e interactions on energy-relaxation is largest in metals with strong e-p interactions. Finally, the time high energy electron states remain occupied depends only on the strength of e-e interactions, even if e-p scattering rates are much greater than e-e scattering rates.
61 - H. Esmaielpour 2015
InAs/AlAs$_{x}$Sb$_{1-x}$ quantum wells are investigated for their potential as hot carrier solar cells. Continuous wave power and temperature dependent photoluminescence indicate a transition in the dominant hot carrier relaxation process from conventional phonon-mediated carrier relaxation below 90 K to a regime where inhibited radiative recombination dominates the hot carrier relaxation at elevated temperatures. At temperatures below 90 K photoluminescence measurements are consistent with type-I quantum wells that exhibit hole localization associated with alloy/interface fluctuations. At elevated temperatures hole delocalization reveals the true type-II band alignment; where it is observed that inhibited radiative recombination due to the spatial separation of the charge carriers dominates hot carrier relaxation. This decoupling of phonon-mediated relaxation results in robust hot carriers at higher temperatures even at lower excitation powers. These results indicate type-II quantum wells offer potential as practical hot carrier systems.
Among transition metal dichalcogenides (TMDs), VSe$_2$ is considered to develop a purely 3-dimensional (3D) charge-density wave (CDW) at T$_{CDW}$=110 K. Here, by means of high resolution inelastic x-ray scattering (IXS), we show that the CDW transition is driven by the collapse of an acoustic mode at the critical wavevector textit{q}$_{CDW}$= (2.25 0 0.7) r.l.u. and critical temperature T$_{CDW}$=110 K. The softening of this mode starts to be pronounced for temperatures below 2$times$ T$_{CDW}$ and expands over a rather wide region of the Brillouin zone, suggesting a large contribution of the electron-phonon interaction to the CDW formation. This interpretation is supported by our first principles calculations that determine a large momentum-dependence of the electron-phonon interaction, peaking at the CDW wavevector, in the presence of nesting. Fully anharmonic {it ab initio} calculations confirm the softening of one acoustic branch at textit{q}$_{CDW}$ as responsible for the CDW formation and show that van der Waals interactions are crucial to melt the CDW. Our work also highlights the important role of out-of-plane interactions to describe 3D CDWs in TMDs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا