Do you want to publish a course? Click here

Realtime CNN-based Keypoint Detector with Sobel Filter and CNN-based Descriptor Trained with Keypoint Candidates

81   0   0.0 ( 0 )
 Added by Xun Yuan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The local feature detector and descriptor are essential in many computer vision tasks, such as SLAM and 3D reconstruction. In this paper, we introduce two separate CNNs, lightweight SobelNet and DesNet, to detect key points and to compute dense local descriptors. The detector and the descriptor work in parallel. Sobel filter provides the edge structure of the input images as the input of CNN. The locations of key points will be obtained after exerting the non-maximum suppression (NMS) process on the output map of the CNN. We design Gaussian loss for the training process of SobelNet to detect corner points as keypoints. At the same time, the input of DesNet is the original grayscale image, and circle loss is used to train DesNet. Besides, output maps of SobelNet are needed while training DesNet. We have evaluated our method on several benchmarks including HPatches benchmark, ETH benchmark, and FM-Bench. SobelNet achieves better or comparable performance with less computation compared with SOTA methods in recent years. The inference time of an image of 640x480 is 7.59ms and 1.09ms for SobelNet and DesNet respectively on RTX 2070 SUPER.



rate research

Read More

197 - Fan Lu , Guang Chen , Yinlong Liu 2020
Keypoint detector and descriptor are two main components of point cloud registration. Previous learning-based keypoint detectors rely on saliency estimation for each point or farthest point sample (FPS) for candidate points selection, which are inefficient and not applicable in large scale scenes. This paper proposes Random Sample-based Keypoint Detector and Descriptor Network (RSKDD-Net) for large scale point cloud registration. The key idea is using random sampling to efficiently select candidate points and using a learning-based method to jointly generate keypoints and descriptors. To tackle the information loss of random sampling, we exploit a novel random dilation cluster strategy to enlarge the receptive field of each sampled point and an attention mechanism to aggregate the positions and features of neighbor points. Furthermore, we propose a matching loss to train the descriptor in a weakly supervised manner. Extensive experiments on two large scale outdoor LiDAR datasets show that the proposed RSKDD-Net achieves state-of-the-art performance with more than 15 times faster than existing methods. Our code is available at https://github.com/ispc-lab/RSKDD-Net.
Fully convolutional networks (FCN) have achieved great success in human parsing in recent years. In conventional human parsing tasks, pixel-level labeling is required for guiding the training, which usually involves enormous human labeling efforts. To ease the labeling efforts, we propose a novel weakly supervised human parsing method which only requires simple object keypoint annotations for learning. We develop an iterative learning method to generate pseudo part segmentation masks from keypoint labels. With these pseudo masks, we train an FCN network to output pixel-level human parsing predictions. Furthermore, we develop a correlation network to perform joint prediction of part and object segmentation masks and improve the segmentation performance. The experiment results show that our weakly supervised method is able to achieve very competitive human parsing results. Despite our method only uses simple keypoint annotations for learning, we are able to achieve comparable performance with fully supervised methods which use the expensive pixel-level annotations.
We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed.
Detecting aligned 3D keypoints is essential under many scenarios such as object tracking, shape retrieval and robotics. However, it is generally hard to prepare a high-quality dataset for all types of objects due to the ambiguity of keypoint itself. Meanwhile, current unsupervised detectors are unable to generate aligned keypoints with good coverage. In this paper, we propose an unsupervised aligned keypoint detector, Skeleton Merger, which utilizes skeletons to reconstruct objects. It is based on an Autoencoder architecture. The encoder proposes keypoints and predicts activation strengths of edges between keypoints. The decoder performs uniform sampling on the skeleton and refines it into small point clouds with pointwise offsets. Then the activation strengths are applied and the sub-clouds are merged. Composite Chamfer Distance (CCD) is proposed as a distance between the input point cloud and the reconstruction composed of sub-clouds masked by activation strengths. We demonstrate that Skeleton Merger is capable of detecting semantically-rich salient keypoints with good alignment, and shows comparable performance to supervised methods on the KeypointNet dataset. It is also shown that the detector is robust to noise and subsampling. Our code is available at https://github.com/eliphatfs/SkeletonMerger.
Learning the spatial-temporal representation of motion information is crucial to human action recognition. Nevertheless, most of the existing features or descriptors cannot capture motion information effectively, especially for long-term motion. To address this problem, this paper proposes a long-term motion descriptor called sequential Deep Trajectory Descriptor (sDTD). Specifically, we project dense trajectories into two-dimensional planes, and subsequently a CNN-RNN network is employed to learn an effective representation for long-term motion. Unlike the popular two-stream ConvNets, the sDTD stream is introduced into a three-stream framework so as to identify actions from a video sequence. Consequently, this three-stream framework can simultaneously capture static spatial features, short-term motion and long-term motion in the video. Extensive experiments were conducted on three challenging datasets: KTH, HMDB51 and UCF101. Experimental results show that our method achieves state-of-the-art performance on the KTH and UCF101 datasets, and is comparable to the state-of-the-art methods on the HMDB51 dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا