No Arabic abstract
In the last few years, the great utility of PT-symmetric systems in sensing small perturbations has been recognized. Here, we propose an alternate method relevant to dissipative systems, especially those coupled to the vacuum of the electromagnetic fields. In such systems, which typically show anti-PT symmetry and do not require the incorporation of gain, vacuum induces coherence between two modes. Owing to this coherence, the linear response acquires a pole on the real axis. We demonstrate how this coherence can be exploited for the enhanced sensing of very weak anhamonicities at low pumping rates. Higher drive powers ($sim 0.1$ W), on the other hand, generate new domains of coherences. Our results are applicable to a wide class of systems, and we specifically illustrate the remarkable sensing capabilities in the context of a weakly anharmonic Yttrium Iron Garnet (YIG) sphere interacting with a cavity via a tapered fiber waveguide. A small change in the anharmonicity leads to a substantial change in the induced spin current.
By embedding a $cal PT$-symmetric (pseudo-Hermitian) system into a large Hermitian one, we disclose the relations between $cal{PT}$-symmetric Hamiltonians and weak measurement theory. We show that the amplification effect in weak measurement on a conventional quantum system can be used to effectively simulate a local broken $cal PT$-symmetric Hamiltonian system, with the pre-selected state in the $cal PT$-symmetric Hamiltonian system and its post-selected state resident in the dilated Hamiltonian system.
The recently theoretical and experimental researches related to $mathcal{PT}$-symmetric system have attracted unprecedented attention because of various novel features and potentials in extending canonical quantum mechanics. However, as the counterpart of $mathcal{PT}$-symmetry, there are only a few researches on anti-$mathcal{PT}$-symmetry. Here, we propose an algorithm for simulating the universal anti-$mathcal{PT}$-symmetric system with quantum circuit. Utilizing the protocols, an oscillation of information flow is observed for the first time in our Nuclear Magnetic Resonance quantum simulator. We will show that information will recover from the environment completely when the anti-$mathcal{PT}$-symmetry is broken, whereas no information can be retrieved in the symmetry-unbroken phase. Our work opens the gate for practical quantum simulation and experimental investigation of universal anti-$mathcal{PT}$-symmetric system in quantum computer.
The dilation method is an important and useful way in experimentally simulating non-Hermitian, especially $cal PT$-symmetric systems. However, the time dependent dilation problem cannot be explicitly solved in general. In this paper, we consider a special two dimensional time dependent $cal PT$-symmetric system, which is initially set in the unbroken $cal PT$-symmetric phase and later goes across the exceptional point and enters the broken $cal PT$-symmetric phase. For this system, the dilation Hamiltonian and the evolution of $cal PT$-symmetric system are analytically worked out.
The quantum correction to electrical conductivity is studied on the basis of two-dimensional Wolff Hamiltonian, which is an effective model for a spin-orbit coupled (SOC) lattice system. It is shown that weak anti-localization (WAL) arises in SOC lattices, although its mechanism and properties are different from the conventional WAL in normal metals with SOC impurities. The interband SOC effect induces the contribution from the interband singlet Cooperon, which plays a crucial role for WAL in the SOC lattice. It is also shown that there is a crossover from WAL to weak localization in SOC lattices when the Fermi energy or band gap changes. The implications of the present results to Bi-Sb alloys and PbTe under pressure are discussed.
As the counterpart of PT symmetry, abundant phenomena and potential applications of anti-PT symmetry have been predicted or demonstrated theoretically. However, experimental realization of the coupling required in the anti-PT symmetry is difficult. Here, by coupling two YIG spheres to a microwave cavity, the large cavity dissipation rate makes the magnons coupled dissipatively with each other, thereby obeying a two-dimensional anti-PT Hamiltonian. In terms of the magnon-readout method, a new method adopted here, we demonstrate the validity of our method in constructing an anti-PT system and present the counterintuitive level attraction process. Our work provides a new platform to explore the anti-PT symmetry properties and paves the way to study multi-magnoncavity-polariton systems.