No Arabic abstract
We present a method for assigning a statistical significance to detection candidates in targeted searches for continuous gravitational waves from known pulsars, without assuming the detector noise is Gaussian and stationary. We take advantage of the expected Doppler phase modulation of the signal induced by Earths orbital motion, as well as the amplitude modulation induced by Earths spin, to effectively blind the search to real astrophysical signals from a given location in the sky. We use this sky-shifting to produce a large number of noise-only data realizations to empirically estimate the background of a search and assign detection significances, in a similar fashion to the use of timeslides in searches for compact binaries. We demonstrate the potential of this approach by means of simulated signals, as well as hardware injections into real detector data. In a study of simulated signals in non-Gaussian noise, we find that our method outperforms another common strategy for evaluating detection significance. We thus demonstrate that this and similar techniques have the potential to enable a first confident detection of continuous gravitational waves.
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of eleven pulsars using data from Advanced LIGOs first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly studied when detailed models for the waveforms are available. However, one motivation for the field of gravitational wave astronomy is the potential for new discoveries. Recognizing and characterizing unanticipated signals requires data analysis techniques which do not depend on theoretical predictions for the gravitational waveform. Past searches for short-duration un-modeled gravitational wave signals have been hampered by transient noise artifacts, or glitches, in the detectors. In some cases, even high signal-to-noise simulated astrophysical signals have proven difficult to distinguish from glitches, so that essentially any plausible signal could be detected with at most 2-3 $sigma$ level confidence. We have put forth the BayesWave algorithm to differentiate between generic gravitational wave transients and glitches, and to provide robust waveform reconstruction and characterization of the astrophysical signals. Here we study BayesWaves capabilities for rejecting glitches while assigning high confidence to detection candidates through analytic approximations to the Bayesian evidence. Analytic results are tested with numerical experiments by adding simulated gravitational wave transient signals to LIGO data collected between 2009 and 2010 and found to be in good agreement.
We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously-published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.
Gravitational wave astronomy has established its role in measuring the equation of state governing cold supranuclear matter. To date and in the near future, gravitational wave measurements from neutron star binaries are likely to be restricted to the inspiral. However, future upgrades and the next generation of gravitational wave detectors will enable us to detect the gravitational wave signatures emitted after the merger of two stars, at times when densities beyond those in single neutron stars are reached. Therefore, the postmerger gravitational wave signal enables studies of supranuclear matter at its extreme limit. To support this line of research, we present new and updated phenomenological relations between the binary properties and characteristic features of the postmerger evolution. Most notably, we derive an updated relation connecting the mass-weighted tidal deformability and the maximum neutron star mass to the dominant emission frequency of the postmerger spectrum. With the help of a configuration-independent Bayesian analysis using simplified Lorentzian model functions, we find that the main emission frequency of the postmerger remnant, for signal-to-noise ratios of $8$ and above, can be extracted within a 1-sigma uncertainty of about 100 Hz for Advanced LIGO and Advanced Virgos design sensitivities. In some cases, even a postmerger signal-to-noise ratio of $4$ can be sufficient to determine the main emission frequency. This will enable us to measure binary and equation-of-state properties from the postmerger, to perform a consistency check between different parts of the binary neutron star coalescence, and to put our physical interpretation of neutron star mergers to the test.
The existence of a superfluid core in the interior of a rotating neutron star may have an influence on its gravitational wave emission. In addition to the usually-assumed pure quadrupole radiation with the gravitational wave frequency at twice the spin frequency, a frequency of rotation itself may also be present in the gravitational wave spectrum. We study the parameters of a general model for such emission, compare it with previously proposed, simpler models, discuss the feasibility of the recovery of the stellar parameters and carry out the Monte Carlo simulations to test the performance of our estimation method.