Do you want to publish a course? Click here

Slow stretched-exponential and fast compressed-exponential relaxation from local event dynamics

170   0   0.0 ( 0 )
 Added by Kostya Trachenko
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an atomistic model for correlated particle dynamics in liquids and glasses predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential relaxation (CER). The model is based on the key concept of elastically interacting local relaxation events. SER is related to slowing down of dynamics of local relaxation events as a result of this interaction, whereas CER is related to the avalanche-like dynamics in the low-temperature glass state. The model predicts temperature dependence of SER and CER seen experimentally and recovers the simple, Debye, exponential decay at high temperature. Finally, we reproduce SER to CER crossover across the glass transition recently observed in metallic glasses.



rate research

Read More

250 - N. Lemke , I. A. Campbell 2011
Diffusion on a diluted hypercube has been proposed as a model for glassy relaxation and is an example of the more general class of stochastic processes on graphs. In this article we determine numerically through large scale simulations the eigenvalue spectra for this stochastic process and calculate explicitly the time evolution for the autocorrelation function and for the return probability, all at criticality, with hypercube dimensions $N$ up to N=28. We show that at long times both relaxation functions can be described by stretched exponentials with exponent 1/3 and a characteristic relaxation time which grows exponentially with dimension $N$. The numerical eigenvalue spectra are consistent with analytic predictions for a generic sparse network model.
We study the relaxation for growing interfaces in quenched disordered media. We use a directed percolation depinning model introduced by Tang and Leschhorn for 1+1-dimensions. We define the two-time autocorrelation function of the interface height C(t,t) and its Fourier transform. These functions depend on the difference of times t-t for long enough times, this is the steady-state regime. We find a two-step relaxation decay in this regime. The long time tail can be fitted by a stretched exponential relaxation function. The relaxation time is proportional to the characteristic distance of the clusters of pinning cells in the direction parallel to the interface and it diverges as a power law. The two-step relaxation is lost at a given wave length of the Fourier transform, which is proportional to the characteristic distance of the clusters of pinning cells in the direction perpendicular to the interface. The stretched exponential relaxation is caused by the existence of clusters of pinning cells and it is a direct consequence of the quenched noise.
131 - B. Cui , R. Milkus , A. Zaccone 2017
Amorphous solids or glasses are known to exhibit stretched-exponential decay over broad time intervals in several of their macroscopic observables: intermediate scattering function, dielectric relaxation modulus, time-elastic modulus etc. This behaviour is prominent especially near the glass transition. In this Letter we show, on the example of dielectric relaxation, that stretched-exponential relaxation is intimately related to the peculiar lattice dynamics of glasses. By reformulating the Lorentz model of dielectric matter in a more general form, we express the dielectric response as a function of the vibrational density of states (DOS) for a random assembly of spherical particles interacting harmonically with their nearest-neighbours. Surprisingly we find that near the glass transition for this system (which coincides with the Maxwell rigidity transition), the dielectric relaxation is perfectly consistent with stretched-exponential behaviour with Kohlrausch exponents $0.56 < beta < 0.65$, which is the range where exponents are measured in most experimental systems. Crucially, the root cause of stretched-exponential relaxation can be traced back to soft modes (boson-peak) in the DOS.
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, $f(t)=f_0exp[-(t/tau)^beta]$, with the exponent $beta$ increasing with the temperature. The relaxation time follows an Arrhenius behavior divergence when $Tto 0$. A relation between the specific heat and the entropy in the long time regime is found.
This paper is concerned with the connection between the properties of dielectric relaxation and ac (alternating-current) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are, stretched exponential character of dielectric relaxation, power-law power spectral density, and anomalous dependence of ac conduction coefficient on frequency. We propose a self-consistent model of dielectric relaxation, in which the relaxations are described by a stretched exponential decay function. Mathematically, our study refers to the expanding area of fractional calculus and we propose a systematic derivation of the fractional relaxation and fractional diffusion equations from the property of ac universality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا