Do you want to publish a course? Click here

physiCal: A physical approach to the marginalization of LIGO calibration uncertainties

88   0   0.0 ( 0 )
 Added by Salvatore Vitale
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The data from ground based gravitational-wave detectors such as Advanced LIGO and Virgo must be calibrated to convert the digital output of photodetectors into a relative displacement of the test masses in the detectors, producing the quantity of interest for inference of astrophysical gravitational wave sources. Both statistical uncertainties and systematic errors are associated with the calibration process, which would in turn affect the analysis of detected sources, if not accounted for. Currently, source characterization algorithms either entirely neglect the possibility of calibration uncertainties or account for them in a way that does not use knowledge of the calibration process itself. We present physiCal, a new approach to account for calibration errors during the source characterization step, which directly uses all the information available about the instrument calibration process. Rather than modeling the overall detectors response function, we consider the individual components that contribute to the response. We implement this method and apply it to the compact binaries detected by LIGO and Virgo during the second observation run, as well as to simulated binary neutron stars for which the sky position and distance are known exactly. We find that the physiCal model performs as well as the method currently used within the LIGO-Virgo collaboration, but additionally it enables improving the measurement of specific components of the instrument control through astrophysical calibration.

rate research

Read More

111 - T.Akutsu , M.Ando , K.Arai 2020
KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located in Kamioka, Gifu, Japan. In this series of articles, we present an overview of the baseline KAGRA, for which we finished installing the designed configuration in 2019. This article describes the method of calibration (CAL) used for reconstructing gravitational wave signals from the detector outputs, as well as the characterization of the detector (DET). We also review the physical environmental monitors (PEM) system and the geophysics interferometer (GIF). Both are used for characterizing and evaluating the data quality of the gravitational wave channel. They play important roles in utilizing the detector output for gravitational wave searches. These characterization investigations will be even more important in the near future, once gravitational wave detection has been achieved, and in using KAGRA in the gravitational wave astronomy era.
45 - R. M. Kiehn 2006
This article examines how the physical presence of field energy and particulate matter could influence the topological properties of space time. The theory is developed in terms of vector and matrix equations of exterior differential forms. The topological features and the dynamics of such exterior differential systems are studied with respect to processes of continuous topological evolution. The theory starts from the sole postulate that field properties of a Physical Vacuum (a continuum) can be defined in terms of a vector space domain, of maximal rank, infinitesimal neighborhoods, that supports a Basis Frame as a 4 x 4 matrix of C2 functions with non-zero determinant. The basis vectors of such Basis Frames exhibit differential closure. The particle properties of the Physical Vacuum are defined in terms of topological defects (or compliments) of the field vector space defined by those points where the maximal rank, or non-zero determinant, condition fails. The topological universality of a Basis Frame over infinitesimal neighborhoods can be refined by particular choices of a subgroup structure of the Basis Frame, [B]. It is remarkable that from such a universal definition of a Physical Vacuum, specializations permit the deduction of the field structures of all four forces, from gravity fields to Yang Mills fields, and associate the origin of topological charge and topological spin to the Affine torsion coefficients of the induced Cartan Connection matrix [C] of 1-forms.
The present work deals with the search of useful physical applications of some generalized groups of metric transformations. We put forward different proposals and focus our attention on the implementation of one of them. Particularly, the results show how one can control very efficiently the kind of spacetimes related by a Generalized Kerr-Schild (GKS) Ansatz through Kerr-Schild groups. Finally a preliminar study regarding other generalized groups of metric transformations is undertaken which is aimed at giving some hints in new Ansatze to finding useful solutions to Einsteins equations.
The phase space analysis of cosmological parameters $Omega_{phi}$ and $gamma_{phi}$ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential $V(phi)=V_{0}exp(-lambdaphi)$. Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.
We discuss in a critical way the physical foundations of geometric structure of relativistic theories of gravity by the so-called Ehlers-Pirani-Schild formalism. This approach provides a natural interpretation of the observables showing how relate them to General Relativity and to a large class of Extended Theories of Gravity. In particular we show that, in such a formalism, geodesic and causal structures of space-time can be safely disentangled allowing a correct analysis in view of observations and experiment. As specific case, we take into account the case of f(R) gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا