Do you want to publish a course? Click here

A cryogenic continuously rotating half-wave plate for the POLARBEAR-2b cosmic microwave background receiver

111   0   0.0 ( 0 )
 Added by Charles A Hill
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the design and laboratory evaluation of a cryogenic continuously rotating half-wave plate (CHWP) for the POLARBEAR-2b (PB-2b) cosmic microwave background (CMB) receiver, the second installment of the Simons Array. PB-2b will observe at 5,200 m elevation in the Atacama Desert of Chile in two frequency bands centered at 90 and 150 GHz. In order to suppress atmospheric 1/f noise and mitigate systematic effects that arise when differencing orthogonal detectors, PB-2b modulates linear sky polarization using a CHWP rotating at 2 Hz. The CHWP has a 440 mm clear aperture diameter and is cooled to $approx$ 50 K in the PB-2b receiver cryostat. It consists of a low-friction superconducting magnetic bearing (SMB) and a low-torque synchronous electromagnetic motor, which together dissipate < 2 W. During cooldown, a grip-and-release mechanism centers the rotor to < 0.5 mm, and during continuous rotation, an incremental optical encoder measures the rotor angle with a noise level of 0.1 $mathrm{mu rad / sqrt{Hz}}$. We discuss the experimental requirements for the PB-2b CHWP, the designs of its various subsystems, and the results of its evaluation in the laboratory. The presented CHWP has been deployed to Chile and is expected to see first light on PB-2b in 2020 or 2021.



rate research

Read More

A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, $I$, $Q$ and $U$, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of $sim$0.5 m), where the CRHWP can be placed between the primary mirror and focal plane. In this configuration, one needs to address the intensity to polarization ($I{rightarrow}P$) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the POLARBEAR experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the $I{rightarrow}P$ leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz ($ell sim$39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.
The POLARBEAR-2/Simons Array Cosmic Microwave Background (CMB) polarization experiment is an upgrade and expansion of the existing POLARBEAR-1 (PB-1) experiment, located in the Atacama desert in Chile. Along with the CMB temperature and $E$-mode polarization anisotropies, PB-1 and the Simons Array study the CMB $B$-mode polarization anisotropies produced at large angular scales by inflationary gravitational waves, and at small angular scales by gravitational lensing. These measurements provide constraints on various cosmological and particle physics parameters, such as the tensor-to-scalar ratio $r$, and the sum of the neutrino masses. The Simons Array consists of three 3.5 m diameter telescopes with upgraded POLARBEAR-2 (PB-2) cryogenic receivers, named PB-2a, -2b, and -2c. PB-2a and -2b will observe the CMB over multiple bands centered at 95 GHz and 150 GHz, while PB-2c will observe at 220 GHz and 270 GHz, which will enable enhanced foreground separation and de-lensing. Each Simons Array receiver consists of two cryostats which share the same vacuum space: an optics tube containing the cold reimaging lenses and Lyot stop, infrared-blocking filters, and cryogenic half-wave plate; and a backend which contains the focal plane detector array, cold readout components, and millikelvin refrigerator. Each PB-2 focal plane array is comprised of 7,588 dual-polarization, multi-chroic, lenslet- and antenna-coupled, Transition Edge Sensor (TES) bolometers which are cooled to 250 mK and read out using Superconducting Quantum Interference Devices (SQUIDs) through a digital frequency division multiplexing scheme with a multiplexing factor of 40. In this work we describe progress towards commissioning the PB-2b and -2c receivers including cryogenic design, characterization, and performance of both the PB-2b and -2c backend cryostats.
We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization of the cosmic microwave background radiation (CMB). MAXIPOL is the first bolometric CMB experiment to observe the sky using rapid polarization modulation. To build MAXIPOL, the CMB temperature anisotropy experiment MAXIMA was retrofitted with a rotating half-wave plate and a stationary analyzer. We describe the instrument, the observations, the calibration and the reduction of data collected with twelve polarimeters operating at 140 GHz and with a FWHM beam size of 10 arcmin. We present maps of the Q and U Stokes parameters of an 8 deg^2 region of the sky near the star Beta Ursae Minoris. The power spectra computed from these maps give weak evidence for an EE signal. The maximum-likelihood amplitude of l(l+1)C^{EE}_{l}/(2 pi) is 55_{-45}^{+51} uK^2 (68%), and the likelihood function is asymmetric and skewed positive such that with a uniform prior the probability that the amplitude is positive is 96%. This result is consistent with the expected concordance LCDM amplitude of 14 uK^2. The maximum likelihood amplitudes for l(l+1)C^{BB}_{l}/(2 pi) and $ell(ell+1)C^{EB}_{ell}/2pi$ are -31_{-19}^{+31} and 18_{-34}^{+27} uK^2 (68%), respectively, which are consistent with zero. All of the results are for one bin in the range 151 < l < 693. Tests revealed no residual systematic errors in the time or map domain. A comprehensive discussion of the analysis of the data is presented in a companion paper.
We discuss a systematic effect associated with measuring polarization with a continuously rotating half-wave plate. The effect was identified with the data from the E and B Experiment (EBEX), which was a balloon-borne instrument designed to measure the polarization of the CMB as well as that from Galactic dust. The data show polarization fraction larger than 10% while less than 3% were expected from instrumental polarization. We give evidence that the excess polarization is due to detector non-linearity in the presence of a continuously rotating HWP. The non-linearity couples intensity signals into polarization. We develop a map-based method to remove the excess polarization. Applying this method for the 150 (250) GHz bands data we find that 81% (92%) of the excess polarization was removed. Characterization and mitigation of this effect is important for future experiments aiming to measure the CMB B-modes with a continuously rotating HWP.
We present an evaluation of systematic effects associated with a continuously-rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (CMB plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ~0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have reported. No significant dipole or quadrupole terms are detected; we constrain each to be <0.07% (95% confidence), limited by statistical uncertainty in our measurement. Dipole and quadrupole leakage at this level lead to systematic error on r<0.01 before any mitigation due to scan cross-linking or boresight rotation. The measured scalar leakage and the theoretical level of dipole and quadrupole leakage produce systematic error of r<0.001 for the ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously-rotating HWPs for future experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا