Do you want to publish a course? Click here

Infrastructure Recovery Curve Estimation Using Gaussian Process Regression on Expert Elicited Data

75   0   0.0 ( 0 )
 Added by Quoc Dung Cao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Infrastructure recovery time estimation is critical to disaster management and planning. Inspired by recent resilience planning initiatives, we consider a situation where experts are asked to estimate the time for different infrastructure systems to recover to certain functionality levels after a scenario hazard event. We propose a methodological framework to use expert-elicited data to estimate the expected recovery time curve of a particular infrastructure system. This framework uses the Gaussian process regression (GPR) to capture the experts estimation-uncertainty and satisfy known physical constraints of recovery processes. The framework is designed to find a balance between the data collection cost of expert elicitation and the prediction accuracy of GPR. We evaluate the framework on realistically simulated expert-elicited data concerning the two case study events, the 1995 Great Hanshin-Awaji Earthquake and the 2011 Great East Japan Earthquake.



rate research

Read More

Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalizing over model uncertainty using a prior distribution constructed using Gaussian process regression (GPR). As an example, we apply this technique to the measurement of chirp mass using (simulated) gravitational-wave signals from binary black holes that could be observed using advanced-era gravitational-wave detectors. Unless properly accounted for, uncertainty in the gravitational-wave templates could be the dominant source of error in studies of these systems. We explain our approach in detail and provide proofs of various features of the method, including the limiting behavior for high signal-to-noise, where systematic model uncertainties dominate over noise errors. We find that the marginalized likelihood constructed via GPR offers a significant improvement in parameter estimation over the standard, uncorrected likelihood both in our simple one-dimensional study, and theoretically in general. We also examine the dependence of the method on the size of training set used in the GPR; on the form of covariance function adopted for the GPR, and on changes to the detector noise power spectral density.
This work proposes a nonparametric method to compare the underlying mean functions given two noisy datasets. The motivation for the work stems from an application of comparing wind turbine power curves. Comparing wind turbine data presents new problems, namely the need to identify the regions of difference in the input space and to quantify the extent of difference that is statistically significant. Our proposed method, referred to as funGP, estimates the underlying functions for different data samples using Gaussian process models. We build a confidence band using the probability law of the estimated function differences under the null hypothesis. Then, the confidence band is used for the hypothesis test as well as for identifying the regions of difference. This identification of difference regions is a distinct feature, as existing methods tend to conduct an overall hypothesis test stating whether two functions are different. Understanding the difference regions can lead to further practical insights and help devise better control and maintenance strategies for wind turbines. The merit of funGP is demonstrated by using three simulation studies and four real wind turbine datasets.
Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covariance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covariance structure simultaneously. The CGP enables the model to define different covariance structure for each component of the response variables. This flexibility ensures the model to cope with data coming from different resources or having different data structures, and thus to provide accurate estimation and prediction. In addition, the model is able to accommodate large-dimensional covariates. The definition of the model, the inference and the implementation, as well as its asymptotic properties, are discussed. Comprehensive numerical examples with both simulation studies and real data are presented.
90 - Chiwoo Park 2021
This paper presents a Gaussian process (GP) model for estimating piecewise continuous regression functions. In scientific and engineering applications of regression analysis, the underlying regression functions are piecewise continuous in that data follow different continuous regression models for different regions of the data with possible discontinuities between the regions. However, many conventional GP regression approaches are not designed for piecewise regression analysis. We propose a new GP modeling approach for estimating an unknown piecewise continuous regression function. The new GP model seeks for a local GP estimate of an unknown regression function at each test location, using local data neighboring to the test location. To accommodate the possibilities of the local data from different regions, the local data is partitioned into two sides by a local linear boundary, and only the local data belonging to the same side as the test location is used for the regression estimate. This local split works very well when the input regions are bounded by smooth boundaries, so the local linear approximation of the smooth boundaries works well. We estimate the local linear boundary jointly with the other hyperparameters of the GP model, using the maximum likelihood approach. Its computation time is as low as the local GPs time. The superior numerical performance of the proposed approach over the conventional GP modeling approaches is shown using various simulated piecewise regression functions.
With explosively increasing demands for unmanned aerial vehicle (UAV) applications, reliable link acquisition for serving UAVs is required. Considering the dynamic characteristics of UAV, it is hugely challenging to persist a reliable link without beam misalignment. In this paper, we propose a flight sensor data and beamforming signal based integrated UAV tracking scheme to deal with this problem. The proposed scheme provides a compatible integrated system considering the practical specification of the flight sensor data and the beamforming pilot signal. The UAV position tracking is comprised of two steps: 1) UAV position prediction by the flight sensor data and 2) position update with the beamforming signal using Gaussian process regression (GPR) method, which is a nonparametric machine learning. The flight sensor data can assist ground station (GS) or UAV nodes in designing the precoding and the receive beamforming matrix with drastically reduced overheads. The beamforming signal can accomplish high beamforming gain to be maintained even when the flight sensor data is absent. Therefore, the proposed scheme can support the moving target continuously by utilizing these two signals. The simulation results are provided to confirm that the proposed scheme outperforms other conventional beam tracking schemes. We also derive 3-dimensional (3D) beamforming gain and spectral efficiency (SE) from the mean absolute error (MAE) of the angular value estimation, which can be used as beamforming performance metrics of the data transmission link in advance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا