In this paper we propose an efficient pricing-hedging framework for volatility derivatives which simultaneously takes into account path roughness and jumps. Instead of dealing with log-volatility, we directly model the instantaneous variance of a risky asset in terms of a fractional Ornstein-Uhlenbeck process driven by an infinite-activity L{e}vy subordinator, which is shown to exhibit roughness under suitable conditions and also eludes the need for an independent Brownian component. This structure renders the characteristic function of forward variance obtainable at least in semi-closed form, subject to a generic integrable kernel. To analyze financial derivatives, primarily swaps and European-style options, on average forward volatility, we introduce a general class of power-type derivatives on the average forward variance, which also provide a way of adjusting the option investors risk exposure. Pricing formulae are based on numerical inverse Fourier transform and, as illustrated by an empirical study on VIX options, permit stable and efficient model calibration once specified.