We outline, test, and apply a new scheme for nonpertubative analyses of quantized field systems in contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends itself for a generalization to full Quantum Gravity. We advocate the point of view that quantum field theories should be regularized by sequences of quasi-physical systems comprising a well defined number of the fields degrees of freedom. In dependence on this number, each system backreacts autonomously and self-consistently on the gravitational field. In this approach, the limit which removes the regularization automatically generates the physically correct spacetime geometry, i.e., the metric the quantum states of the field prefer to live in. We apply the scheme to a Gaussian scalar field on maximally symmetric spacetimes, thereby confronting it with the standard approaches. As an application, the results are used to elucidate the cosmological constant problem allegedly arising from the vacuum fluctuations of quantum matter fields. An explicit calculation shows that the problem disappears if the pertinent continuum limit is performed in the improved way advocated here. A further application concerns the thermodynamics of de Sitter space where the approach offers a natural interpretation of the micro-states that are counted by the Bekenstein-Hawking entropy.