Do you want to publish a course? Click here

Background Independent Field Quantization with Sequences of Gravity-Coupled Approximants

83   0   0.0 ( 0 )
 Added by Maximilian Becker
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We outline, test, and apply a new scheme for nonpertubative analyses of quantized field systems in contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends itself for a generalization to full Quantum Gravity. We advocate the point of view that quantum field theories should be regularized by sequences of quasi-physical systems comprising a well defined number of the fields degrees of freedom. In dependence on this number, each system backreacts autonomously and self-consistently on the gravitational field. In this approach, the limit which removes the regularization automatically generates the physically correct spacetime geometry, i.e., the metric the quantum states of the field prefer to live in. We apply the scheme to a Gaussian scalar field on maximally symmetric spacetimes, thereby confronting it with the standard approaches. As an application, the results are used to elucidate the cosmological constant problem allegedly arising from the vacuum fluctuations of quantum matter fields. An explicit calculation shows that the problem disappears if the pertinent continuum limit is performed in the improved way advocated here. A further application concerns the thermodynamics of de Sitter space where the approach offers a natural interpretation of the micro-states that are counted by the Bekenstein-Hawking entropy.



rate research

Read More

A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underlying the use of the number of degrees of freedom as a scale for a Renormalization Group flow. We focus on tensor models, for which we explain how the tensor size serves as the scale for a background-independent coarse-graining flow. This flow provides a new probe of a universal continuum limit in tensor models. We review the development and setup of this tool and summarize results in the 2- and 3-dimensional case. Moreover, we provide a step-by-step guide to the practical implementation of these ideas and tools by deriving the flow of couplings in a rank-4-tensor model. We discuss the phenomenon of dimensional reduction in these models and find tentative first hints for an interacting fixed point with potential relevance for the continuum limit in four-dimensional quantum gravity.
Whether gravity is quantized remains an open question. To shed light on this problem, various Gedankenexperiments have been proposed. One popular example is an interference experiment with a massive system that interacts gravitationally with another distant system, where an apparent paradox arises: even for space-like separation the outcome of the interference experiment depends on actions on the distant system, leading to a violation of either complementarity or no-signalling. A recent resolution shows that the paradox is avoided when quantizing gravitational radiation and including quantum fluctuations of the gravitational field. Here we show that the paradox in question can also be resolved without considering gravitational radiation, relying only on the Planck length as a limit on spatial resolution. Therefore, in contrast to conclusions previously drawn, we find that the necessity for a quantum field theory of gravity does not follow from so far considered Gedankenexperiments of this type. In addition, we point out that in the common realization of the setup the effects are governed by the mass octopole rather than the quadrupole. Our results highlight that no Gedankenexperiment to date compels a quantum field theory of gravity, in contrast to the electromagnetic case.
The entanglement of the coupled massive scalar field in the spacetime of a Garfinkle-Horowitz-Strominger(GHS) dilaton black hole has been investigated. It is found that the entanglement does not depend on the mass of the particle and the coupling between the scalar field and the gravitational field, but it decreases as the dilaton parameter $D$ increases. It is interesting to note that in the limit of $Dto M$, corresponding to the case of an extreme black hole, the state has no longer distillable entanglement for any state parameter $alpha$, but the mutual information equals to a nonvanishing minimum value, which indicates that the total correlations consist of classical correlations plus bound entanglement in this limit.
De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual gauge group opens the way to the usual LQG quantization techniques. We recall the exemple of the LQG quantization of SU(2) CS theory with cylindrical space topology, which thus provides a complete LQG of a Lorentzian gravity model in 3-dimensional space-time.
We show that the Plebanski-Demianski spacetime persists as a solution of General Relativity when the theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature corrections. The quadratic terms are of two types and are given by quadratic combinations of the Riemann tensor as well as a higher curvature interaction constructed with a scalar field which is conformally coupled to quadratic terms in the curvature. The later is built in terms of a four-rank tensor $S_{mu u}^{ lambdarho}$ that depends on the Riemann tensor and the scalar field, and that transforms covariantly under local Weyl rescallings. Due to the generality of the Plebanski-Demianski family, several new hairy black hole solutions are obtained in this higher curvature model. We pay particular attention to the C-metric spacetime and the stationary Taub-NUT metric, which in the hyperbolic case can be analytically extended leading to healthy, asymptotically AdS, wormhole configurations. Finally, we present a new general model for higher derivative, conformally coupled scalars, depending on an arbitrary function and that we have dubbed Conformal K-essence. We also construct spherically symmetric hairy black holes for these general models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا