Do you want to publish a course? Click here

Contact network changes in ordered and disordered disk packings

168   0   0.0 ( 0 )
 Added by Corey S. O'Hern
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the mechanical response of packings of purely repulsive, frictionless disks to quasistatic deformations. The deformations include simple shear strain at constant packing fraction and at constant pressure, polydispersity strain (in which we change the particle size distribution) at constant packing fraction and at constant pressure, and isotropic compression. For each deformation, we show that there are two classes of changes in the interparticle contact networks: jump changes and point changes. Jump changes occur when a contact network becomes mechanically unstable, particles rearrange, and the potential energy (when the strain is applied at constant packing fraction) or enthalpy (when the strain is applied at constant pressure) and all derivatives are discontinuous. During point changes, a single contact is either added to or removed from the contact network. For repulsive linear spring interactions, second- and higher-order derivatives of the potential energy/enthalpy are discontinuous at a point change, while for Hertzian interactions, third- and higher-order derivatives of the potential energy/enthalpy are discontinuous. We illustrate the importance of point changes by studying the transition from a hexagonal crystal to a disordered crystal induced by applying polydispersity strain. During this transition, the system only undergoes point changes, with no jump changes. We emphasize that one must understand point changes, as well as jump changes, to predict the mechanical properties of jammed packings.



rate research

Read More

We present experimental and numerical results for displacement response functions in packings of rigid frictional disks under gravity. The central disk on the bottom layer is shifted upwards by a small amount, and the motions of disks above it define the displacement response. Disk motions are measured with the help of a still digital camera. The responses so measured provide information on the force-force response, that is, the excess force at the bottom produced by a small overload in the bulk. We find that, in experiments, the vertical-force response shows a Gaussian-like shape, broadening roughly as the square root of distance, as predicted by diffusive theories for stress propagation in granulates. However, the diffusion coefficient obtained from a fit of the response width is ten times larger than predicted by such theories. Moreover we notice that our data is compatible with a crossover to linear broadening at large scales. In numerical simulations on similar systems (but without friction), on the other hand, a double-peaked response is found, indicating wave-like propagation of stresses. We discuss the main reasons for the different behaviors of experimental and model systems, and compare our findings with previous works.
At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct numerical construction of disordered jammed states with a volume fraction varying between two limits, $0.636$ and $0.646$. We identify these limits with the random loose packing volume fraction $rl$ and the random close packing volume fraction $rc$ of frictionless spheres, respectively.
Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.
We analyze the local structure of two dimensional packings of frictional disks numerically. We focus on the fractions x_i of particles that are in contact with i neighbors, and systematically vary the confining pressure p and friction coefficient mu. We find that for all mu, the fractions x_i exhibit powerlaw scaling with p, which allows us to obtain an accurate estimate for x_i at zero pressure. We uncover how these zero pressure fractions x_i vary with mu, and introduce a simple model that captures most of this variation. We also probe the correlations between the contact numbers of neighboring particles.
Contact breaking and Hertzian interactions between grains can both give rise to nonlinear vibrational response of static granular packings. We perform molecular dynamics simulations at constant energy in 2D of frictionless bidisperse disks that interact via Hertzian spring potentials as a function of energy and measure directly the vibrational response from the Fourier transform of the velocity autocorrelation function. We compare the measured vibrational response of static packings near jamming onset to that obtained from the eigenvalues of the dynamical matrix to determine the temperature above which the linear response breaks down. We compare packings that interact via single-sided (purely repulsive) and double-sided Hertzian spring interactions to disentangle the effects of the shape of the potential from contact breaking. Our studies show that while Hertzian interactions lead to weak nonlinearities in the vibrational behavior (e.g. the generation of harmonics of the eigenfrequencies of the dynamical matrix), the vibrational response of static packings with Hertzian contact interactions is dominated by contact breaking as found for systems with repulsive linear spring interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا