Do you want to publish a course? Click here

Distributed Linguistic Representations in Decision Making: Taxonomy, Key Elements and Applications, and Challenges in Data Science and Explainable Artificial Intelligence

117   0   0.0 ( 0 )
 Added by Zhen Zhang Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Distributed linguistic representations are powerful tools for modelling the uncertainty and complexity of preference information in linguistic decision making. To provide a comprehensive perspective on the development of distributed linguistic representations in decision making, we present the taxonomy of existing distributed linguistic representations. Then, we review the key elements of distributed linguistic information processing in decision making, including the distance measurement, aggregation methods, distributed linguistic preference relations, and distributed linguistic multiple attribute decision making models. Next, we provide a discussion on ongoing challenges and future research directions from the perspective of data science and explainable artificial intelligence.



rate research

Read More

The traditional production paradigm of large batch production does not offer flexibility towards satisfying the requirements of individual customers. A new generation of smart factories is expected to support new multi-variety and small-batch customized production modes. For that, Artificial Intelligence (AI) is enabling higher value-added manufacturing by accelerating the integration of manufacturing and information communication technologies, including computing, communication, and control. The characteristics of a customized smart factory are to include self-perception, operations optimization, dynamic reconfiguration, and intelligent decision-making. The AI technologies will allow manufacturing systems to perceive the environment, adapt to the external needs, and extract the process knowledge, including business models, such as intelligent production, networked collaboration, and extended service models. This paper focuses on the implementation of AI in customized manufacturing (CM). The architecture of an AI-driven customized smart factory is presented. Details of intelligent manufacturing devices, intelligent information interaction, and construction of a flexible manufacturing line are showcased. The state-of-the-art AI technologies of potential use in CM, i.e., machine learning, multi-agent systems, Internet of Things, big data, and cloud-edge computing are surveyed. The AI-enabled technologies in a customized smart factory are validated with a case study of customized packaging. The experimental results have demonstrated that the AI-assisted CM offers the possibility of higher production flexibility and efficiency. Challenges and solutions related to AI in CM are also discussed.
There has been a growing interest in model-agnostic methods that can make deep learning models more transparent and explainable to a user. Some researchers recently argued that for a machine to achieve a certain degree of human-level explainability, this machine needs to provide human causally understandable explanations, also known as causability. A specific class of algorithms that have the potential to provide causability are counterfactuals. This paper presents an in-depth systematic review of the diverse existing body of literature on counterfactuals and causability for explainable artificial intelligence. We performed an LDA topic modelling analysis under a PRISMA framework to find the most relevant literature articles. This analysis resulted in a novel taxonomy that considers the grounding theories of the surveyed algorithms, together with their underlying properties and applications in real-world data. This research suggests that current model-agnostic counterfactual algorithms for explainable AI are not grounded on a causal theoretical formalism and, consequently, cannot promote causability to a human decision-maker. Our findings suggest that the explanations derived from major algorithms in the literature provide spurious correlations rather than cause/effects relationships, leading to sub-optimal, erroneous or even biased explanations. This paper also advances the literature with new directions and challenges on promoting causability in model-agnostic approaches for explainable artificial intelligence.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
The increasing need for economic, safe, and sustainable smart manufacturing combined with novel technological enablers, has paved the way for Artificial Intelligence (AI) and Big Data in support of smart manufacturing. This implies a substantial integration of AI, Industrial Internet of Things (IIoT), Robotics, Big data, Blockchain, 5G communications, in support of smart manufacturing and the dynamical processes in modern industries. In this paper, we provide a comprehensive overview of different aspects of AI and Big Data in Industry 4.0 with a particular focus on key applications, techniques, the concepts involved, key enabling technologies, challenges, and research perspective towards deployment of Industry 5.0. In detail, we highlight and analyze how the duo of AI and Big Data is helping in different applications of Industry 4.0. We also highlight key challenges in a successful deployment of AI and Big Data methods in smart industries with a particular emphasis on data-related issues, such as availability, bias, auditing, management, interpretability, communication, and different adversarial attacks and security issues. In a nutshell, we have explored the significance of AI and Big data towards Industry 4.0 applications through panoramic reviews and discussions. We believe, this work will provide a baseline for future research in the domain.
The Artificial Intelligence (AI) revolution foretold of during the 1960s is well underway in the second decade of the 21st century. Its period of phenomenal growth likely lies ahead. Still, we believe, there are crucial lessons that biology can offer that will enable a prosperous future for AI. For machines in general, and for AIs especially, operating over extended periods or in extreme environments will require energy usage orders of magnitudes more efficient than exists today. In many operational environments, energy sources will be constrained. Any plans for AI devices operating in a challenging environment must begin with the question of how they are powered, where fuel is located, how energy is stored and made available to the machine, and how long the machine can operate on specific energy units. Hence, the materials and technologies that provide the needed energy represent a critical challenge towards future use-scenarios of AI and should be integrated into their design. Here we make four recommendations for stakeholders and especially decision makers to facilitate a successful trajectory for this technology. First, that scientific societies and governments coordinate Biomimetic Research for Energy-efficient, AI Designs (BREAD); a multinational initiative and a funding strategy for investments in the future integrated design of energetics into AI. Second, that biomimetic energetic solutions be central to design consideration for future AI. Third, that a pre-competitive space be organized between stakeholder partners and fourth, that a trainee pipeline be established to ensure the human capital required for success in this area.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا