No Arabic abstract
We systematically searched for gravity- and Rossby-mode period spacing patterns in Kepler eclipsing binaries with $gamma$ Doradus pulsators. These stars provide an excellent opportunity to test the theory of tidal synchronisation and angular momentum transport in F- and A-type stars. We discovered 35 systems that show clear patterns, including the spectroscopic binary KIC 10080943. Combined with 45 non-eclipsing binaries with $gamma$ Dor components that have been found using pulsation timing, we measured their near-core rotation rates and asymptotic period spacings. We find that many stars are tidally locked if the orbital periods are shorter than 10 days, in which the near-core rotation periods given by the traditional approximation of rotation (TAR) are consistent with the orbital period. Compared to the single stars, $gamma$ Dor stars in binaries tend to have slower near-core rotation rates, likely a consequence of tidal spin-down. We also find three stars that have extremely slow near-core rotation rates. To explain these, we hypothesise that unstable tidally excited oscillations can transfer angular momentum from the star to the orbit, and slow the star below synchronism, a process we refer to as `inverse tides.
We present a spectroscopic survey of known and candidate $gamma$,Doradus stars. The high-resolution, high signal-to-noise spectra of 52 objects were collected by five different spectrographs. The spectral classification, atmospheric parameters (teff, $log g$, $xi$), $vsin i$ and chemical composition of the stars were derived. The stellar spectral and luminosity classes were found between G0-A7 and IV-V, respectively. The initial values for teff and logg were determined from the photometric indices and spectral energy distribution. Those parameters were improved by the analysis of hydrogen lines. The final values of teff, logg and $xi$ were derived from the iron lines analysis. The teff values were found between 6000,K and 7900,K, while logg,values range from 3.8 to 4.5,dex. Chemical abundances and $vsin i$ values were derived by the spectrum synthesis method. The $vsin i$ values were found between 5 and 240,km,s$^{-1}$. The chemical abundance pattern of $gamma$,Doradus stars were compared with the pattern of non-pulsating stars. It turned out that there is no significant difference in abundance patterns between these two groups. Additionally, the relations between the atmospheric parameters and the pulsation quantities were checked. A strong correlation between the $vsin i$ and the pulsation periods of $gamma$,Doradus variables was obtained. The accurate positions of the analysed stars in the H-R diagram have been shown. Most of our objects are located inside or close to the blue edge of the theoretical instability strip of $gamma$,Doradus.
Eclipsing binaries (EBs) are unique benchmarks for stellar evolution. On the one hand, detached EBs hosting at least one star with detectable solar-like oscillations constitute ideal test objects to calibrate asteroseismic measurements. On the other hand, the oscillations and surface activity of stars that belong to EBs offer unique information about the evolution of binary systems. This paper builds upon previous works dedicated to red giant stars (RG) in EBs -- 20 known systems so far -- discovered by the NASA Kepler mission. Here we report the discovery of 16 RGs in EBs also from the Kepler data. This new sample includes three SB2-EBs with oscillations and six close systems where the RG display a clear surface activity and complete oscillation suppression. Based on dedicated high-resolution spectroscopic observations (Apache Point Observatory, Observatoire de Haute Provence), we focus on three main aspects. From the extended sample of 14 SB2-EBs, we first confirm that the simple application of the asteroseismic scaling relations to RGs overestimates masses and radii of RGs, by about 15% and 5%. This bias can be reduced by employing either new asteroseismic reference values for RGs, or model-based corrections of the asteroseismic parameters. Secondly, we confirm that close binarity leads to a high level of photometric modulation (up to 10%), and a suppression of solar-like oscillations. In particular, we show that it reduces the lifetime of radial modes by a factor of up to 10. Thirdly, we use our 16 new systems to complement previous observational studies that aimed at constraining tidal dissipation in interacting binaries. In particular, we identify systems with circular orbits despite relatively young ages, which suggests exploring complementary tidal dissipation mechanisms in the future. Finally, we report the measurements of mass, radius, and age of three M-dwarf companion stars.
The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 square degree Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.
In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed from models are ~ 5-10% lower and ~ 3-5% higher than observed, respectively. These discrepancies have been attributed to different factors, notably to the high levels of magnetic activity present on these stars. In this paper, we test the effect of magnetic activity both on models and on the observational analysis of eclipsing binaries using a sample of such systems with accurate fundamental properties. Regarding stellar models, we have found that unrealistically high spot coverages need to be assumed to reproduce the observations. Tests considering metallicity effects and missing opacities on models indicate that these are not able to explain the radius discrepancies observed. With respect to the observations, we have tested the effect of several spot distributions on the light curve analysis. Our results show that spots cause systematic deviations on the stellar radii derived from light curve analysis when distributed mainly over the stellar poles. Assuming the existence of polar spots, overall agreement between models and observations is reached when ~ 35% spot coverage is considered on stellar models. Such spot coverage induces a systematic deviation in the radius determination from the light curve analysis of ~ 3% and is also compatible with the modulations observed on the light curves of these systems. Finally, we have found that the effect of activity or rotation on convective transport in partially radiative stars may also contribute to explain the differences seen in some of the systems with shorter orbital periods.
We present results of an asteroseismic study on the $gamma$ Dor type {it Kepler} target KIC,6462033. {it Kepler} photometry is used to derive the frequency content and principal modes. High-dispersion ground-based spectroscopy is also carried out in order to determine the atmospheric parameters and projected rotational velocity. From an analysis of the {it Kepler} long cadence time series, we find that the light curve of KIC,6462033 is dominated by three modes with frequencies $f_{1}$=0.92527, $f_{2}$=2.03656 and $f_{3}$=1.42972 d$^{-1}$ as well as we detect more than a few hundreds of combination terms. However, two other independent frequencies appear to have lower amplitudes in addition to these three dominant terms. No significant peaks are detected in the region $>$ 5 d$^{-1}$. We therefore confirm that KIC,6462033 pulsates in the frequency range of $gamma$ Dor type variables, and a future study will allow us to investigate modal behaviour in this star.