Tetragonal Mn-based Heusler compounds feature rich exchange interactions and exotic topological magnetic textures, such as antiskyrmions, complimented by the chiral-type Hall effects. This makes the material class interesting for device applications. We report the relation of the magnetic exchange interactions to the thickness and Mn concentration of Mn$_{x}$PtSn films, grown by magnetron sputtering. The competition of the magnetic exchange interactions determines the finite temperature magnetic texture and thereby the chiral-type Hall effects in external magnetic fields. We investigate the magnetic and transport properties as a function of magnetic field and temperature. We focus on the anomalous and chiral-type Hall effects and the behavior of the dc-magnetization, in relation to chiral spin textures. We further determine the stable crystal phase for a relative Mn concentration between 1.5 and 1.85 in the $Ioverline{4}2d$ structure. We observe a spin-reorientation transition in all compounds studied, which is due to the competition of exchange interactions on different Mn sublattices. We discuss our results in terms of exchange interactions and compare them with theoretical atomistic spin calculations.