Do you want to publish a course? Click here

Discrete-time inference for slow-fast systems driven by fractional Brownian motion

177   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study statistical inference for small-noise-perturbed multiscale dynamical systems where the slow motion is driven by fractional Brownian motion. We develop statistical estimators for both the Hurst index as well as a vector of unknown parameters in the model based on a single time series of observations from the slow process only. We prove that these estimators are both consistent and asymptotically normal as the amplitude of the perturbation and the time-scale separation parameter go to zero. Numerical simulations illustrate the theoretical results.



rate research

Read More

This article studies typical dynamics and fluctuations for a slow-fast dynamical system perturbed by a small fractional Brownian noise. Based on an ergodic theorem with explicit rates of convergence, which may be of independent interest, we characterize the asymptotic dynamics of the slow component to two orders (i.e., the typical dynamics and the fluctuations). The limiting distribution of the fluctuations turns out to depend upon the manner in which the small-noise parameter is taken to zero relative to the scale-separation parameter. We study also an extension of the original model in which the relationship between the two small parameters leads to a qualitative difference in limiting behavior. The results of this paper provide an approximation, to two orders, to dynamical systems perturbed by small fractional Brownian noise and subject to multiscale effects.
Stochastic differential equations and stochastic dynamics are good models to describe stochastic phenomena in real world. In this paper, we study N independent stochastic processes Xi(t) with real entries and the processes are determined by the stochastic differential equations with drift term relying on some random effects. We obtain the Girsanov-type formula of the stochastic differential equation driven by Fractional Brownian Motion through kernel transformation. Under some assumptions of the random effect, we estimate the parameter estimators by the maximum likelihood estimation and give some numerical simulations for the discrete observations. Results show that for the different H, the parameter estimator is closer to the true value as the amount of data increases.
We study the parameter estimation problem of Vasicek Model driven by sub-fractional Brownian processes from discrete observations, and let {S_t^H,t>=0} denote a sub-fractional Brownian motion whose Hurst parameter 1/2<H<1 . The studies are as follows: firstly, two unknown parameters in the model are estimated by the least squares method. Secondly, the strong consistency and the asymptotic distribution of the estimators are studied respectively. Finally, our estimators are validated by numerical simulation.
In this presentation, we introduce a new method for change point analysis on the Hurst index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The proposed method is a transposition of the FDpV (Filtered Derivative with p-value) method introduced for the detection of change points on the mean in Bertrand et al. (2011) to the case of changes on the Hurst index. The underlying statistics of the FDpV technology is a new statistic estimator for Hurst index, so-called Increment Bernoulli Statistic (IBS). Both FDpV and IBS are methods with linear time and memory complexity, with respect to the size of the series. Thus the resulting method for change point analysis on Hurst index reaches also a linear complexity.
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of assumptions on the drift; these include the choice $$B(cdot,mu) = fastmu(cdot) + g(cdot),quad f,gin B^alpha_{infty,infty}, quad alpha>1-1/2H,$$ thus extending the results by Catellier and Gubinelli [9] to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا