We present an experimental method to detect lower bounds to the quantum capacity of two-qubit communication channels. We consider an implementation with polarisation degrees of freedom of two photons and report on the efficiency of such a method in the presence of correlated noise for varying values of the correlation strength. The procedure is based on the generation of separable states of two qubits and local measurements at the output. We also compare the performance of the correlated two-qubit channel with the single-qubit channels corresponding to the partial trace on each of the subsystems, thus showing the beneficial effect of properly taking into account correlations to achieve a larger quantum capacity.
The purpose of an entanglement witness experiment is to certify the creation of an entangled state from a finite number of trials. The statistical confidence of such an experiment is typically expressed as the number of observed standard deviations of witness violations. This method implicitly assumes that the noise is well-behaved so that the central limit theorem applies. In this work, we propose two methods to analyze witness experiments where the states can be subject to arbitrarily correlated noise. Our first method is a rejection experiment, in which we certify the creation of entanglement by rejecting the hypothesis that the experiment can only produce separable states. We quantify the statistical confidence by a p-value, which can be interpreted as the likelihood that the observed data is consistent with the hypothesis that only separable states can be produced. Hence a small p-value implies large confidence in the witnessed entanglement. The method applies to general witness experiments and can also be used to witness genuine multipartite entanglement. Our second method is an estimation experiment, in which we estimate and construct confidence intervals for the average witness value. This confidence interval is statistically rigorous in the presence of correlated noise. The method applies to general estimation problems, including fidelity estimation. To account for systematic measurement and random setting generation errors, our model takes into account device imperfections and we show how this affects both methods of statistical analysis. Finally, we illustrate the use of our methods with detailed examples based on a simulation of NV centers.
We present an experiment demonstrating entanglement-enhanced classical communication capacity of a quantum channel with correlated noise. The channel is modelled by a fiber optic link exhibiting random birefringence that fluctuates on a time scale much longer than the temporal separation between consecutive uses of the channel. In this setting, introducing entanglement between two photons travelling down the fiber allows one to encode reliably up to one bit of information into their joint polarization degree of freedom. When no quantum correlations between two separate uses of the channel are allowed, this capacity is reduced by a factor of more than three. We demonstrated this effect using a fiber-coupled source of entagled photon pairs based on spontaneous parametric down-conversion, and a linear-optics Bell state measurement.
We study the capacity of d-dimensional quantum channels with memory modeled by correlated noise. We show that, in agreement with previous results on Pauli qubit channels, there are situations where maximally entangled input states achieve higher values of mutual information than product states. Moreover, a strong dependence of this effect on the nature of the noise correlations as well as on the parity of the space dimension is found. We conjecture that when entanglement gives an advantage in terms of mutual information, maximally entangled states saturate the channel capacity.
Quantum communications using continuous variables are quite mature experimental techniques and the relevant theories have been extensively investigated with various methods. In this paper, we study the continuous variable quantum channels from a different angle, i.e., by exploring master equations. And we finally give explicitly the capacity of the channel we are studying. By the end of this paper, we derive the criterion for the optimal capacities of the Gaussian channel versus its fidelity.
We consider the transmission of classical information over a quantum channel by two senders. The channel capacity region is shown to be a convex hull bound by the Von Neumann entropy and the conditional Von Neumann entropy. We discuss some possible applications of our result. We also show that our scheme allows a reasonable distribution of channel capacity over two senders.
Valeria Cimini
,Ilaria Gianani
,Massimiliano F. Sacchi
.
(2020)
.
"Experimental witnessing of the quantum channel capacity in the presence of correlated noise"
.
Valeria Cimini
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا