No Arabic abstract
COVID-19 patients show varying severity of the disease ranging from asymptomatic to requiring intensive care. Although a number of SARS-CoV-2 specific monoclonal antibodies have been identified, we still lack an understanding of the overall landscape of B-cell receptor (BCR) repertoires in COVID-19 patients. Here, we used high-throughput sequencing of bulk and plasma B-cells collected over multiple time points during infection to characterize signatures of B-cell response to SARS-CoV-2 in 19 patients. Using principled statistical approaches, we determined differential features of BCRs associated with different disease severity. We identified 38 significantly expanded clonal lineages shared among patients as candidates for specific responses to SARS-CoV-2. Using single-cell sequencing, we verified reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identified natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in a number of patients. Our results provide important insights for development of rational therapies and vaccines against COVID-19.
Introduction: For COVID-19 patients accurate prediction of disease severity and mortality risk would greatly improve care delivery and resource allocation. There are many patient-related factors, such as pre-existing comorbidities that affect disease severity. Since rapid automated profiling of peripheral blood samples is widely available, we investigated how such data from the peripheral blood of COVID-19 patients might be used to predict clinical outcomes. Methods: We thus investigated such clinical datasets from COVID-19 patients with known outcomes by combining statistical comparison and correlation methods with machine learning algorithms; the latter included decision tree, random forest, variants of gradient boosting machine, support vector machine, K-nearest neighbour and deep learning methods. Results: Our work revealed several clinical parameters measurable in blood samples, which discriminated between healthy people and COVID-19 positive patients and showed predictive value for later severity of COVID-19 symptoms. We thus developed a number of analytic methods that showed accuracy and precision for disease severity and mortality outcome predictions that were above 90%. Conclusions: In sum, we developed methodologies to analyse patient routine clinical data which enables more accurate prediction of COVID-19 patient outcomes. This type of approaches could, by employing standard hospital laboratory analyses of patient blood, be utilised to identify, COVID-19 patients at high risk of mortality and so enable their treatment to be optimised.
As the second wave in India mitigates, COVID-19 has now infected about 29 million patients countrywide, leading to more than 350 thousand people dead. As the infections surged, the strain on the medical infrastructure in the country became apparent. While the country vaccinates its population, opening up the economy may lead to an increase in infection rates. In this scenario, it is essential to effectively utilize the limited hospital resources by an informed patient triaging system based on clinical parameters. Here, we present two interpretable machine learning models predicting the clinical outcomes, severity, and mortality, of the patients based on routine non-invasive surveillance of blood parameters from one of the largest cohorts of Indian patients at the day of admission. Patient severity and mortality prediction models achieved 86.3% and 88.06% accuracy, respectively, with an AUC-ROC of 0.91 and 0.92. We have integrated both the models in a user-friendly web app calculator, https://triage-COVID-19.herokuapp.com/, to showcase the potential deployment of such efforts at scale.
Objective: To conduct a meta-analysis of current studies that examined sex differences in severity and mortality in patients with COVID-19, and identify potential mechanisms underpinning these differences. Methods: We performed a systematic review to collate data from observational studies examining associations of sex differences with clinical outcomes of COVID-19. PubMed, Web of Science and four preprint servers were searched for relevant studies. Data were extracted and analyzed using meta-analysis where possible, with summary data presented otherwise. Publicly available bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data were analyzed to explore the potential mechanisms underlying the observed association. Results: 39 studies met inclusion criteria, representing 77932 patients, of which 41510 (53.3%) were males. Men were at a markedly increased risk of developing severe cases compared with women. Furthermore, the pooled odds ratio (OR) of mortality for male group compared with the female group indicated significant higher mortality rate for male. Data from scRNA-seq suggest that men have a higher amount of ACE2-expressing pulmonary alveolar type II cells than women. Sex-based immunological differences exist. The expression of androgen receptor (AR) is positively correlated with ACE2, and there is evidence that AR may directly regulate the expression of ACE2. Conclusions: This meta-analysis detected an increased severity and mortality rate in the male populations with COVID-19, which might be attributable to the sex-based differences in cellular compositions and immunological microenvironments of the lung. The host cell receptor ACE2 is likely regulated by AR signaling pathway, which is identified as a potential target for prevention and treatment of SARS-Cov-2 infections in men.
In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. The enormous increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. Therefore, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing disease-causing genetic variants and identifying the cellular contexts in which they affect gene expression. Ultimately, this information can enable development of personalized medicine. Here, we outline the goals, approach, potential utility and early proofs-of-concept of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.
Coronavirus disease 2019 (COVID-19) has impacted almost every part of human life worldwide, posing a massive threat to human health. There is no specific drug for COVID-19, highlighting the urgent need for the development of effective therapeutics. To identify potentially repurposable drugs, we employed a systematic approach to mine candidates from U.S. FDA-approved drugs and preclinical small-molecule compounds by integrating the gene expression perturbation data for chemicals from the Library of Integrated Network-Based Cellular Signatures project with a publicly available single-cell RNA sequencing dataset from mild and severe COVID-19 patients. We identified 281 FDA-approved drugs that have the potential to be effective against SARS-CoV-2 infection, 16 of which are currently undergoing clinical trials to evaluate their efficacy against COVID-19. We experimentally tested the inhibitory effects of tyrphostin-AG-1478 and brefeldin-a on the replication of the single-stranded ribonucleic acid (ssRNA) virus influenza A virus. In conclusion, we have identified a list of repurposable anti-SARS-CoV-2 drugs using a systems biology approach.