No Arabic abstract
The renormalization properties of two local BRST invariant composite operators, $(O,V_mu)$, corresponding respectively to the gauge invariant description of the Higgs particle and of the massive gauge vector boson, are scrutinized in the $U(1)$ Higgs model by means of the algebraic renormalization setup. Their renormalization $Z$s factors are explicitly evaluated at one-loop order in the $overline{text{MS}}$ scheme by taking into due account the mixing with other gauge invariant operators. In particular, it turns out that the operator $V_mu$ mixes with the gauge invariant quantity $partial_ u F_{mu u}$, which has the same quantum numbers, giving rise to a $2 times 2$ mixing matrix. Moreover, two additional powerful Ward identities exist which enable us to determine the whole set of $Z$s factors entering the $2 times 2$ mixing matrix as well as the $Z$ factor of the operator $O$ in a purely algebraic way. An explicit check of these Ward identities is provided. The final setup obtained allows for computing perturbatively the full renormalized result for any $n$-point correlation function of the scalar and vector composite operators.
The spectral properties of a set of local gauge (BRST) invariant composite operators are investigated in the $SU(2)$ Yang--Mills--Higgs model with a single Higgs field in the fundamental representation, quantized in the t Hooft $R_{xi}$-gauge. These operators can be thought of as a BRST invariant version of the elementary fields of the theory, the Higgs and gauge fields, with which they share a gauge independent pole mass. The two-point correlation functions of both BRST invariant composite operators and elementary fields, as well as their spectral functions, are investigated at one-loop order. It is shown that the spectral functions of the elementary fields suffer from a strong unphysical dependence from the gauge parameter $xi$, and can even exhibit positivity violating behaviour. In contrast, the BRST invariant local operators exhibit a well defined positive spectral density.
In this work, we study a gauge invariant local non-polynomial composite spinor field in the fundamental representation in order to establish its renormalizability. Similar studies were already done in the case of pure Yang-Mills theories where a local composite gauge invariant vector field was obtained and an invariant renormalizable mass term could be introduced. Our model consists of a massive Euclidean Yang-Mills action with gauge group $SU(N)$ coupled to fermionic matter in the presence of an invariant spinor composite field and quantized in the linear covariant gauges. The whole set of Ward identities is analysed and the algebraic proof of the renormalizability of the model is obtained to all orders in a loop expansion.
We review the current status of the application of the local composite operator technique to the condensation of dimension two operators in quantum chromodynamics (QCD). We pay particular attention to the renormalization group aspects of the formalism and the renormalization of QCD in various gauges.
We describe how the strings, which are classical solutions of the continuum three-dimensional U(1)+Higgs theory, can be studied on the lattice. The effect of an external magnetic field is also discussed and the first results on the string free energy are presented. It is shown that the string free energy can be used as an order parameter when the scalar self-coupling is large and the transition is continuous.
We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxiliary fields, including one of the Stueckelberg type, it is shown that both the action and the associated nilpotent BRST operator can be put in local form. Direct consequences of this fully local and BRST-symmetric framework are drawn from its Ward identities: (i) an exact prediction for the longitudinal part of the gluon propagator in linear covariant gauges that is compatible with recent lattice results and (ii) a proof of the gauge-parameter independence of all correlation functions of local BRST-invariant operators.