Observation of Negative THz Photoconductivity in Large Area Type-II Dirac Semimetal PtTe2


Abstract in English

As a newly emergent type-II Dirac semimetal, Platinum Telluride (PtTe2) stands out from other 2D noble-transition-metal dichalcogenides for the unique structure and novel physical properties, such as high carrier mobility, strong electron-phonon coupling and tunable bandgap, which make the PtTe2 a good candidate for applications in optoelectronics, valleytronics and far infrared detectors. Although the transport properties of PtTe2 have been studied extensively, the dynamics of the nonequilibrium carriers remain nearly uninvestigated. Herein we employ optical pump-terahertz (THz) probe spectroscopy (OPTP) to systematically study the photocarrier dynamics of PtTe2 thin films with varying pump fluence, temperature, and film thickness. Upon photoexcitation the THz photoconductivity (PC) of 5 nm PtTe2 film shows abrupt increase initially, while the THz PC changes into negative value in a subpicosecond time scale, followed by a prolonged recovery process that lasted hundreds of picoseconds (ps). This unusual THz PC response observed in the 5 nm PtTe2 film was found to be absent in a 2 nm PtTe2 film. We assign the unexpected negative THz PC as the small polaron formation due to the strong electron-Eg-mode phonon coupling, which is further substantiated by pump fluence- and temperature-dependent measurements as well as the Raman spectroscopy. Moreover, our investigations give a subpicosecond time scale of sequential carrier cooling and polaron formation. The present study provides deep insights into the underlying dynamics evolution mechanisms of photocarrier in type-II Dirac semimetal upon photoexcitation, which is fundamental importance for designing PtTe2-based optoelectronic devices.

Download