Do you want to publish a course? Click here

Temporal evolution of low-temperature phonon sidebands in WSe$_2$ monolayers

142   0   0.0 ( 0 )
 Added by Roberto Rosati
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-temperature photoluminescence (PL) of hBN-encapsulated monolayer tungsten diselenide (WSe$_2$) shows a multitude of sharp emission peaks below the bright exciton. Some of them have been recently identified as phonon sidebands of momentum-dark states. However, the exciton dynamics behind the emergence of these sidebands has not been revealed yet. In this joint theory-experiment study, we theoretically predict and experimentally observe time-resolved PL providing microscopic insights into thermalization of hot excitons formed after optical excitation. In good agreement between theory and experiment, we demonstrate a spectral red-shift of phonon sidebands on a timescale of tens of picoseconds reflecting the phonon-driven thermalization of hot excitons in momentum-dark states. Furthermore, we predict the emergence of a transient phonon sideband that vanishes in the stationary PL. The obtained microscopic insights are applicable to a broad class of 2D materials with multiple exciton valleys.



rate research

Read More

Energy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer (1L) transition metal dichaclogenides (TMDs) in optoelectronics. We measure light scattering and emission in 1L-WSe$_2$ close to the laser excitation energy (down to~$sim$0.6meV). We detect a series of periodic maxima in the hot photoluminescence intensity, stemming from energy states higher than the A-exciton state, in addition to sharp, non-periodic Raman lines related to the phonon modes. We find a period $sim$15meV for peaks both below (Stokes) and above (anti-Stokes) the laser excitation energy. We detect 7 maxima from 78K to room temperature in the Stokes signal and 5 in the anti-Stokes, of increasing intensity with temperature. We assign these to phonon cascades, whereby carriers undergo phonon-induced transitions between real states in the free-carrier gap with a probability of radiative recombination at each step. We infer that intermediate states in the conduction band at the $Lambda$-valley of the Brillouin zone participate in the cascade process of 1L-WSe$_2$. The observations explain the primary stages of carrier relaxation, not accessible so far in time-resolved experiments. This is important for optoelectronic applications, such as photodetectors and lasers, because these determine the recovery rate and, as a consequence, the devices speed and efficiency.
We present a high-resolution resonance Raman study of hBN encapsulated MoSe$_2$ and WSe$_2$ monolayers at 4 K using excitation energies from 1.6 eV to 2.25 eV. We report resonances with the WSe$_2$ A2s and MoSe$_2$ A2s and B2s excited Rydberg states despite their low oscillator strength. When resonant with the 2s states we identify new Raman peaks which are associated with intravalley scattering between different Rydberg states via optical phonons. By calibrating the Raman scattering efficiency and separately constraining the electric dipole matrix elements, we reveal that the scattering rates for k=0 optical phonons are comparable for both 1s and 2s states despite differences in the envelope functions. We also observe multiple new dispersive Raman peaks including a peak at the WSe$_2$ A2s resonance that demonstrates non-linear dispersion and peak-splitting behavior that suggests that the dispersion relations for dark excitonic states at energies near the 2s state are extremely complex.
The spectral and spatiotemporal dynamics of photoluminescence in monolayers of transition metal dichalcogenide WSe$_2$ obtained by mechanical exfoliation on a Si/SiO$_2$ substrate is studied over a wide range of temperatures and excitation powers. It is shown that the dynamics is nonexponential and, for times $t$ exceeding $sim$50 ps after the excitation pulse, is described by a dependence of the form $1/(t+t_0)$. Photoluminescence decay is accelerated with a decrease in temperature, as well as with a decrease in the energy of emitting states. It is shown that the observed dynamics cannot be described by a bimolecular recombination process, such as exciton--exciton annihilation. A model that describes the nonexponential photoluminescence dynamics by taking into account the spread of radiative recombination times of localized exciton states in a random potential gives good agreement with experimental data.
Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient exciton-phonon scattering couples bright and dark states and gives rise to an asymmetric excitonic line shape. The observed asymmetry can be traced back to phonon-induced sidebands that are accompanied by a polaron redshift. We present a joint theory-experiment study investigating the microscopic origin of these sidebands in different TMD materials taking into account intra- and intervalley scattering channels opened by optical and acoustic phonons. The gained insights contribute to a better understanding of the optical fingerprint of these technologically promising nanomaterials.
We investigate the interactions of photoexcited carriers with lattice vibrations in thin films of the layered transition metal dichalcogenide (TMDC) WSe$_2$. Employing femtosecond electron diffraction with monocrystalline samples and first principle density functional theory calculations, we obtain a momentum-resolved picture of the energy-transfer from excited electrons to phonons. The measured momentum-dependent phonon population dynamics are compared to first principle calculations of the phonon linewidth and can be rationalized in terms of electronic phase-space arguments. The relaxation of excited states in the conduction band is dominated by intervalley scattering between $Sigma$ valleys and the emission of zone-boundary phonons. Transiently, the momentum-dependent electron-phonon coupling leads to a non-thermal phonon distribution, which, on longer timescales, relaxes to a thermal distribution via electron-phonon and phonon-phonon collisions. Our results constitute a basis for monitoring and predicting out of equilibrium electrical and thermal transport properties for nanoscale applications of TMDCs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا