No Arabic abstract
We present new formulas for one-loop ambitwistor-string correlators for gauge theories in any even dimension with arbitrary combinations of gauge bosons, fermions and scalars running in the loop. Our results are driven by new all-multiplicity expressions for tree-level two-fermion correlators in the RNS formalism that closely resemble the purely bosonic ones. After taking forward limits of tree-level correlators with an additional pair of fermions/bosons, one-loop correlators become combinations of Lorentz traces in vector and spinor representations. Identities between these two types of traces manifest all supersymmetry cancellations and the power counting of loop momentum. We also obtain parity-odd contributions from forward limits with chiral fermions. One-loop numerators satisfying the Bern-Carrasco-Johansson (BCJ) duality for diagrams with linearized propagators can be extracted from such correlators using the well-established tree-level techniques in Yang-Mills theory coupled to biadjoint scalars. Finally, we obtain streamlined expressions for BCJ numerators up to seven points using multiparticle fields.
One important discovery in recent years is that the total amplitude of gauge theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity. Although the existence of such kinematic numerators is no doubt, the simple and explicit construction is still an important problem. As a small step, in this note we provide an algebraic approach to construct these kinematic numerators. Under our Feynman-diagram-like construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered amplitudes satisfy off-shell KK-relation and off-shell BCJ relation similar to the color ordered scalar theory. Using our construction, the dual DDM form is also established.
BCJ relation reveals a dual between color structures and kinematic structure and can be used to reduce the number of independent color-ordered amplitudes at tree level. Refer to the loop-level in Yang-Mills theory, we investigate the similar BCJ relation in this paper. Four-point 1-loop example in N = 4 SYM can hint about the relation of integrands. Five-point example implies that the general formula can be proven by unitary- cut method. We will then prove a general BCJ relation for 1-loop integrands by D-dimension unitary cut, which can be regarded as a non-trivial generalization of the (fundamental)BCJ relation given by Boels and Isermann in [arXiv:1109.5888 [hep-th]] and [arXiv:1110.4462 [hep-th]].
In this final part of a series of three papers, we will assemble supersymmetric expressions for one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single valued. A key driving force in this construction is the generalization of a so far unnoticed property at tree level; the correlators have the symmetry structure akin to Lie polynomials. One-loop correlators up to seven points are presented in a variety of representations manifesting different subsets of their defining properties. These expressions are related via identities obeyed by the kinematic superfields and worldsheet functions spelled out in the first two parts of this series and reflecting a duality between the two kinds of ingredients. Interestingly, the expression for the eight-point correlator following from our method seems to capture correctly all the dependence on the worldsheet punctures but leaves undetermined the coefficient of the holomorphic Eisenstein series ${rm G}_4$. By virtue of chiral splitting, closed-string correlators follow from the double copy of the open-string results.
We use Pure Spinor string theory to construct suitable kinematical factors which explicitly satisfy the Kleiss-Kuijf (KK) relations. Using the formula conceived by Bern et al. and employed by us for 4- and 5-point amplitudes in a previous work, we are able to compute the 6-point supergravity amplitude from the corresponding SYM building blocks given by Mafra et al.. We derive the KK and Bern-Carrasco-Johansson (BCJ) identities from the BRST invariance and we discuss the relations between Bern et al. building blocks and those of Mafra et al..
In this note we revisit the problem of explicitly computing tree-level scattering amplitudes in various theories in any dimension from worldsheet formulas. The latter are known to produce cubic-tree expansion of tree amplitudes with kinematic numerators automatically satisfying Jacobi-identities, once any half-integrand on the worldsheet is reduced to logarithmic functions. We review a natural class of worldsheet functions called Cayley functions, which are in one-to-one correspondence with labelled trees, and natural expansions of known half-integrands onto them with coefficients that are particularly compact building blocks of kinematic numerators. We present a general formula expressing kinematic numerators of all cubic trees as linear combinations of coefficients of labelled trees, which satisfy Jacobi identities by construction and include the usual combinations in terms of master numerators as a special case. Our results provide an efficient algorithm, which is implemented in a Mathematica package, for computing all tree amplitudes in theories including non-linear sigma model, special Galileon, Yang-Mills-scalar, Einstein-Yang-Mills and Dirac-Born-Infeld.