A note on Tonelli Lagrangian systems on $mathbb{T}^2$ with positive topological entropy on high energy level


Abstract in English

In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mathers Theory.

Download