In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mathers Theory.
Let $f:Xto X$ be a dominating meromorphic map of a compact Kahler surface of large topological degree. Let $S$ be a positive closed current on $X$ of bidegree $(1,1)$. We consider an ergodic measure $ u$ of large entropy supported by $mathrm{supp}(S)$. Defining dimensions for $ u$ and $S$, we give inequalities `a la Ma~ne involving the Lyapunov exponents of $ u$ and those dimensions. We give dynamical applications of those inequalities.
We prove the positive energy conjecture for a class of asymptotically Horowitz-Myers metrics on $mathbb{R}^{2}timesmathbb{T}^{n-2}$. This generalizes the previous results of Barzegar-Chru{s}ciel-H{o}rzinger-Maliborski-Nguyen as well as the authors.
In this short note, for countably infinite amenable group actions, we provide topological proofs for the following results: Bowen topological entropy (dimensional entropy) of the whole space equals the usual topological entropy along tempered F{o}lner sequences; the Hausdorff dimension of an amenable subshift (for certain metric associated to some F{o}lner sequence) equals its topological entropy. This answers questions by Zheng and Chen (Israel Journal of Mathematics 212 (2016), 895-911) and Simpson (Theory Comput. Syst. 56 (2015), 527-543).
We examine iteration of certain skew-products on the bidisk whose components are rational inner functions, with emphasis on simple maps of the form $Phi(z_1,z_2) = (phi(z_1,z_2), z_2)$. If $phi$ has degree $1$ in the first variable, the dynamics on each horizontal fiber can be described in terms of Mobius transformations but the global dynamics on the $2$-torus exhibit some complexity, encoded in terms of certain $mathbb{T}^2$-symmetric polynomials. We describe the dynamical behavior of such mappings $Phi$ and give criteria for different configurations of fixed point curves and rotation belts in terms of zeros of a related one-variable polynomial.
Recently a new class of critical points, termed as {sl perpetual points}, where acceleration becomes zero but the velocity remains non-zero, is observed in nonlinear dynamical systems. In this work we show whether a transformation also maps the perpetual points to another system or not. We establish mathematically that a linearly transformed system is topologicaly conjugate, and hence does map the perpetual points. However, for a nonlinear transformation, various other possibilities are also discussed. It is noticed that under a linear diffeomorphic transformation, perpetual points are mapped, and accordingly, eigenvalues are preserved.
J.G. Damasceno
,J.A.G. Miranda
,L.G. Perona
.
(2020)
.
"A note on Tonelli Lagrangian systems on $mathbb{T}^2$ with positive topological entropy on high energy level"
.
Jos\\'e Ant\\^onio Gon\\c{c}alves Miranda
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا