Do you want to publish a course? Click here

Probing the core of the strong nuclear interaction

105   0   0.0 ( 0 )
 Added by Axel Schmidt
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of Quantum Chromodynamics (QCD). However, as these equations cannot be solved directly, physicists resort to describing nuclear interactions using effective models that are well constrained at typical inter-nucleon distances in nuclei but not at shorter distances. This limits our ability to describe high-density nuclear matter such as in the cores of neutron stars. Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations thereby accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta above 400 MeV/c. As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor-force to a predominantly spin-independent scalar-force. These results demonstrate the power of using such measurements to study the nuclear interaction at short-distances and also support the use of point-like nucleons with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of atomic nuclei.



rate research

Read More

We studied simultaneously the 4He(e,ep), 4He(e,epp), and 4He(e,epn) reactions at Q^2=2 [GeV/c]2 and x_B>1, for a (e,ep) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate the high-momentum tail of the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond ~500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with ab-initio calculations of two-nucleon momentum distributions in 4He.
We study the equation of state of symmetric nuclear matter at zero temperature over a wide range of densities using two complementary theoretical approaches. At low densities up to twice nuclear saturation density, we compute the energy per particle based on modern nucleon-nucleon and three-nucleon interactions derived within chiral effective field theory. For higher densities we derive for the first time constraints in a Fierz-complete setting directly based on quantum chromodynamics using functional renormalization group techniques. We find remarkable consistency of the results obtained from both approaches as they come together in density and the natural emergence of a maximum in the speed of sound $c_S$ at supranuclear densities with a value beyond the asymptotic $c_S^2 = 1/3$. The presence of a maximum appears tightly connected to the formation of a diquark gap.
A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin etc..) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source.
With new experimental information on nuclei far from stability being available, a systematic investigation of excitation energies and electromagnetic properties along the $N=10, 11, 12$ isotones and $Z=10, 11, 12$ isotopes is presented. The experimental data are discussed in the context of the appearance and disappearance of shell closures at $N=Z=8,14,16,20$, and compared to an effective-interaction approach applied to neutrons and protons in $d_{5/2}^{2,3,4}$ configurations. In spite of its simplicity the model is able to explain the observed properties.
We report the first measurement of the eep three-body breakup reaction cross sections in helium-3 ($^3$He) and tritium ($^3$H) at large momentum transfer ($langle Q^2 rangle approx 1.9$ (GeV/c)$^2$) and $x_B>1$ kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta $40 le p_{miss} le 500$ MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon. The measured cross sections are compared with state-of-the-art ab-initio calculations. Overall good agreement, within $pm20%$, is observed between data and calculations for the full $p_{miss}$ range for $^3$H and for $100 le p_{miss} le 350$ MeV/c for $^3$He. Including the effects of rescattering of the outgoing nucleon improves agreement with the data at $p_{miss} > 250$ MeV/c and suggests contributions from charge-exchange (SCX) rescattering. The isoscalar sum of $^3$He plus $^3$H, which is largely insensitive to SCX, is described by calculations to within the accuracy of the data over the entire $p_{miss}$ range. This validates current models of the ground state of the three-nucleon system up to very high initial nucleon momenta of $500$ MeV/c.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا