No Arabic abstract
An old question surrounding bouncing models concerns their stability under vector perturbations. Considering perfect fluids or scalar fields, vector perturbations evolve kinematically as $a^{-2}$, where $a$ is the scale factor. Consequently, a definite answer concerning the bounce stability depends on an arbitrary constant, therefore, there is no definitive answer. In this paper, we consider a more general situation where the primeval material medium is a non-ideal fluid, and its shear viscosity is capable of producing torque oscillations, which can create and dynamically sustain vector perturbations along cosmic evolution. In this framework, one can set that vector perturbations have a quantum mechanical origin, coming from quantum vacuum fluctuations in the far past of the bouncing model, as it is done with scalar and tensor perturbations. Under this prescription, one can calculate their evolution during the whole history of the bouncing model, and precisely infer the conditions under which they remain linear before the expanding phase. It is shown that such linearity conditions impose constraints on the free parameters of bouncing models, which are mild, although not trivial, allowing a large class of possibilities. Such conditions impose that vector perturbations are also not observationally relevant in the expanding phase. The conclusion is that bouncing models are generally stable under vector perturbations. As they are also stable under scalar and tensor perturbations, we conclude that bouncing models are generally stable under perturbations originated from quantum vacuum perturbations in the far past of their contracting phase.
We investigate the tensor and the scalar perturbations in the symmetric bouncing universe driven by one ordinary field and its Lee-Wick partner field which is a ghost. We obtain the even- and the odd-mode functions of the tensor perturbation in the matter-dominated regime. The tensor perturbation grows in time during the contracting phase of the Universe, and decays during the expanding phase. The power spectrum for the tensor perturbation is evaluated and the spectral index is given by $n_{rm T} =6$. We add the analysis on the scalar perturbation by inspecting the even- and the odd-mode functions in the matter-dominated regime, which was studied numerically in our previous work. We conclude that the comoving curvature by the scalar perturbation is constant in the super-horizon scale and starts to decay in the far sub-horizon scale while the Universe expands.
We in this paper investigate the formation and evolution of primordial black holes (PBHs) in nonsingular bouncing cosmologies. We discuss the formation of PBH in the contracting phase and calculate the PBH abundance as a function of the sound speed and Hubble parameter. Afterwards, by taking into account the subsequent PBH evolution during the bouncing phase, we derive the density of PBHs and their Hawking radiation. Our analysis shows that nonsingular bounce models can be constrained from the backreaction of PBHs.
We study a cosmological scenario in which inflation is preceded by a bounce. In this scenario, the primordial singularity, one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior to which the universe undergoes a phase of contraction. Our starting point is the bouncing cosmology investigated in Falciano et al. (2008), which we complete by a detailed study of the transfer of cosmological perturbations through the bounce and a discussion of possible observational effects of bouncing cosmologies. We focus on a symmetric bounce and compute the evolution of cosmological perturbations during the contracting, bouncing and inflationary phases. We derive an expression for the Mukhanov-Sasaki perturbation variable at the onset of the inflationary phase that follows the bounce. Rather than being in the Bunch-Davies vacuum, it is found to be in an excited state that depends on the time scale of the bounce. We then show that this induces oscillations superimposed on the nearly scale-invariant primordial spectra for scalar and tensor perturbations. We discuss the effects of these oscillations in the cosmic microwave background and in the matter power spectrum. We propose a new way to indirectly measure the spatial curvature energy density parameter in the context of this model.
The observed temperature fluctuations in the cosmic microwave background can be traced back to primordial curvature modes that are sourced by adiabatic and/or entropic matter perturbations. In this paper, we explore the entropic mechanism in the context of non-singular bouncing cosmologies. We show that curvature modes are naturally generated during `graceful exit, i.e., when the smoothing slow contraction phase ends and the universe enters the bounce stage. Here, the key role is played by the kinetic energy components that come to dominate the energy density and drive the evolution towards the cosmological bounce.
We derive the equations of motion for scalar metric perturbations in a particular nonsingular bouncing cosmology, where the big bang singularity is replaced by a spacetime defect with a degenerate metric. The adiabatic perturbation solution is obtained for nonrelativistic hydrodynamic matter. We get the same result by working with conformal coordinates. This last method is also valid for vector and tensor metric perturbations, and selected results are presented. We, finally, discuss several new effects from the linear perturbations of this nonsingular bouncing cosmology, such as across-bounce information transfer and the possible imprint on cosmological perturbations from a new phase responsible for the effective spacetime defect.