Geodesic motion in Bogoslovsky-Finsler Spacetimes


Abstract in English

We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einsteins General Relativity. The deformation is a curved version of a one-parameter family of Relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashows Very Special Relativity group ISIM(2). The partially broken Carroll Symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter $b$. We then replace the underlying plane gravitational wave by a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model.

Download