Do you want to publish a course? Click here

Ce:LaBr$_3$ crystals with SiPM array readout and temperature control for the FAMU experiment at RAL

71   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compact X-rays detectors made of 1/2 inch Ce:LaBr3 crystals of cubic shape with SiPM array readout have been developed for the FAMUexperiment at RIKEN-RAL, to instrument regions of difficult access. Due to the high photon yield of Ce:LaBr3 it was possible to use a simple readout scheme based on CAEN V1730 digitizers, without a dedicated amplification stage. The drift with temperature of SiPM gain was corrected by using CAEN A7885D regulated power supply chips with temperature feedback. Energy resolutions (FWHM) around 3:5% at the 137Cs peak and around 9% at the 57Co peak were obtained.



rate research

Read More

87 - M. Bonesini 2020
The goal of the FAMU experiment at RIKEN RAL is the measure of the hyperfine splitting of the ground state of the muonic hydrogen, to allow a determination of the proton Zemach radius with a precision better than $5 times 10^{-3}$ . The comparison of this measurement with the ones done with ordinary hydrogen may help to solve the so-called proton radius puzzle, triggered by the $6 sigma$ discrepancy in the proton charge radius value as extracted from muonic Lamb shift and the value based on e-p scattering and ordinary hydrogen spectroscopy.
212 - H. Gast , R. Greim , T. Kirn 2007
Using thin scintillating fibers with Silicon Photomultiplier (SiPM) readout a mo dular high-resolution charged-particle tracking detector has been designed. The fiber modules consist of 2 x 5 layers of 128 round multiclad scintillating fiber s of 0.250mm diameter. The fibers are read out by four SiPM arrays (8mm x 1mm) e ach on either end of the module.
Particle detectors based on liquid argon (LAr) have recently become recognized as an extremely attractive technology for the direct detection of dark matter as well as the measurement of coherent elastic neutrino-nucleus scattering (CE$ u$NS). The Chinese argon group at Institute of High Energy Physics has been studying the LAr detector technology and a LAr detector has been operating steadily. A program of using a dual phase LAr detector to measure the CE$ u$NS at Taishang Nuclear Power Plant has been proposed and the R&D work is ongoing. Considering the requirements of ultra-low radio-purity and high photon collection efficiency, SiPMs will be a good choice and will be used in the detector. In this proceeding, an introduction of the LAr detector and the measurement results of SiPM array at LAr temperature will be presented.
The Muon Scattering Experiment at the Paul Scherrer Institut uses a mixed beam of electrons, muons, and pions, necessitating precise timing to identify the beam particles and reactions they cause. We describe the design and performance of three timing detectors using plastic scintillator read out with silicon photomultipliers that have been built for the experiment. The Beam Hodoscope, upstream of the scattering target, counts the beam flux and precisely times beam particles both to identify species and provide a starting time for time-of-flight measurements. The Beam Monitor, downstream of the scattering target, counts the unscattered beam flux, helps identify background in scattering events, and precisely times beam particles for time-of-flight measurements. The Beam Focus Monitor, mounted on the target ladder under the liquid hydrogen target inside the target vacuum chamber, is used in dedicated runs to sample the beam spot at three points near the target center, where the beam should be focused.
We present a prototype for the first tracking detector consisting of 250 micron thin scintillating fibers and silicon photomultiplier (SiPM) arrays. The detector has a modular design, each module consists of a mechanical support structure of 10mm Rohacell foam between two 100 micron thin carbon fiber skins. Five layers of scintillating fibers are glued to both top and bottom of the support structure. SiPM arrays with a channel pitch of 250 micron are placed in front of the fibers. We show the results of the first module prototype using multiclad fibers of types Bicron BCF-20 and Kuraray SCSF-81M that were read out by novel 32-channel SiPM arrays from FBK-irst/INFN Perugia as well as 32-channel SiPM arrays produced by Hamamatsu. A spatial resolution of 88 micron +/- 6 micron at an average yield of 10 detected photons per minimal ionizig particle has been achieved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا