No Arabic abstract
Anomalous Microwave Emission (AME) is a significant component of Galactic diffuse emission in the frequency range $10$-$60,$GHz and a new window into the properties of sub-nanometre-sized grains in the interstellar medium. We investigate the morphology of AME in the $approx10^{circ}$ diameter $lambda$ Orionis ring by combining intensity data from the QUIJOTE experiment at $11$, $13$, $17$ and $19,$GHz and the C-Band All Sky Survey (C-BASS) at $4.76,$GHz, together with 19 ancillary datasets between $1.42$ and $3000,$GHz. Maps of physical parameters at $1^{circ}$ resolution are produced through Markov Chain Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating the AME component with a log-normal distribution. AME is detected in excess of $20,sigma$ at degree-scales around the entirety of the ring along photodissociation regions (PDRs), with three primary bright regions containing dark clouds. A radial decrease is observed in the AME peak frequency from $approx35,$GHz near the free-free region to $approx21,$GHz in the outer regions of the ring, which is the first detection of AME spectral variations across a single region. A strong correlation between AME peak frequency, emission measure and dust temperature is an indication for the dependence of the AME peak frequency on the local radiation field. The AME amplitude normalised by the optical depth is also strongly correlated with the radiation field, giving an overall picture consistent with spinning dust where the local radiation field plays a key role.
Anomalous microwave emission (AME) has been observed in numerous sky regions, in the frequency range ~10-60 GHz. One of the most scrutinized regions is G159.6-18.5, located within the Perseus molecular complex. In this paper we present further observations of this region (194 hours in total over ~250 deg^2), both in intensity and in polarization. They span four frequency channels between 10 and 20 GHz, and were gathered with QUIJOTE, a new CMB experiment with the goal of measuring the polarization of the CMB and Galactic foregrounds. When combined with other publicly-available intensity data, we achieve the most precise spectrum of the AME measured to date, with 13 independent data points being dominated by this emission. The four QUIJOTE data points provide the first independent confirmation of the downturn of the AME spectrum at low frequencies, initially unveiled by the COSMOSOMAS experiment in this region. We accomplish an accurate fit of these data using models based on electric dipole emission from spinning dust grains, and also fit some of the parameters on which these models depend. We also present polarization maps with an angular resolution of ~1 deg and a sensitivity of ~25 muK/beam. From these maps, which are consistent with zero polarization, we obtain upper limits of Pi<6.3% and <2.8% (95% C.L.) respectively at 12 and 18 GHz, a frequency range where no AME polarization observations have been reported to date. These constraints are compatible with theoretical predictions of the polarization fraction from electric dipole emission originating from spinning dust grains. At the same time, they rule out several models based on magnetic dipole emission from dust grains ordered in a single magnetic domain, which predict higher polarization levels. Future QUIJOTE data in this region may allow more stringent constraints on the polarization level of the AME.
We present Q-U-I JOint TEnerife (QUIJOTE) intensity and polarisation maps at 10-20 GHz covering a region along the Galactic plane 24<l<45 deg, |b|<8 deg. These maps result from 210 h of data, have a sensitivity in polarisation of ~40 muK/beam and an angular resolution of ~1 deg. Our intensity data are crucial to confirm the presence of anomalous microwave emission (AME) towards the two molecular complexes W43 (22 sigma) and W47 (8 sigma). We also detect at high significance (6 sigma) AME associated with W44, the first clear detection of this emission towards a SNR. The new QUIJOTE polarisation data, in combination with WMAP, are essential to: i) Determine the spectral index of the synchrotron emission in W44, beta_sync =-0.62 +/-0.03, in good agreement with the value inferred from the intensity spectrum once a free-free component is included in the fit. ii) Trace the change in the polarisation angle associated with Faraday rotation in the direction of W44 with rotation measure -404 +/- 49 rad/m2. And iii) set upper limits on the polarisation of W43 of Pi_AME <0.39 per cent (95 per cent C.L.) from QUIJOTE 17~GHz, and <0.22 per cent from WMAP 41 GHz data, which are the most stringent constraints ever obtained on the polarisation fraction of the AME. For typical physical conditions (grain temperature and magnetic field strengths), and in the case of perfect alignment between the grains and the magnetic field, the models of electric or magnetic dipole emissions predict higher polarisation fractions.
The C-Band All-Sky Survey C-BASS is a high-sensitivity all-sky radio survey at an angular resolution of 45 arcmin and a frequency of 4.7 GHz. We present a total intensity 4.7 GHz map of the North Celestial Pole (NCP) region of sky, above declination +80 deg, which is limited by source confusion at a level of ~0.6 mK rms. We apply the template-fitting (cross-correlation) technique to WMAP and Planck data, using the C-BASS map as the synchrotron template, to investigate the contribution of diffuse foreground emission at frequencies ~20-40 GHz. We quantify the anomalous microwave emission (AME) that is correlated with far-infrared dust emission. The AME amplitude does not change significantly (<10%) when using the higher frequency C-BASS 4.7 GHz template instead of the traditional Haslam 408 MHz map as a tracer of synchrotron radiation. We measure template coefficients of $9.93pm0.35$ and $9.52pm0.34$ K per unit $tau_{353}$ when using the Haslam and C-BASS synchrotron templates, respectively. The AME contributes $55pm2,mu$K rms at 22.8 GHz and accounts for ~60% of the total foreground emission. Our results suggest that a harder (flatter spectrum) component of synchrotron emission is not dominant at frequencies >5 GHz; the best-fitting synchrotron temperature spectral index is $beta=-2.91pm0.04$ from 4.7 to 22.8 GHz and $beta=-2.85pm0.14$ from 22.8 to 44.1 GHz. Free-free emission is weak, contributing ~$7,mu$K rms (~7%) at 22.8 GHz. The best explanation for the AME is still electric dipole emission from small spinning dust grains.
In this chapter, we will outline the scientific motivation for studying Anomalous Microwave Emission (AME) with the SKA. AME is thought to be due to electric dipole radiation from small spinning dust grains, although thermal fluctuations of magnetic dust grains may also contribute. Studies of this mysterious component would shed light on the emission mechanism, which then opens up a new window onto the interstellar medium (ISM). AME is emitted mostly in the frequency range $sim 10$--100,GHz, and thus the SKA has the potential of measuring the low frequency side of the AME spectrum, particularly in band 5. Science targets include dense molecular clouds in the Milky Way, as well as extragalactic sources. We also discuss the possibility of detecting rotational line emission from Poly-cyclic Aromatic Hydrocarbons (PAHs), which could be the main carriers of AME. Detecting PAH lines of a given spacing would allow for a definitive identification of specific PAH species.
Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and Rho Ophiuchi molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1 sigma for Perseus and 8.4 sigma for Rho Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In Rho Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright HII regions that show evidence for AME, and are well fitted by spinning dust models.