Do you want to publish a course? Click here

The mass of our Galaxy from satellite proper motions in the Gaia era

196   0   0.0 ( 0 )
 Added by Tobias Fritz K.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Gaia DR2 systemic proper motions of 45 satellite galaxies to constrain the mass of the Milky Way using the scale free mass estimator of Watkins et al. (2010). We first determine the anisotropy parameter $beta$, and the tracer satellites radial density index $gamma$ to be $beta$=$-0.67^{+0.45}_{-0.62}$ and $gamma=2.11pm0.23$. When we exclude possible former satellites of the Large Magellanic Cloud, the anisotropy changes to $beta$=$-0.21^{+0.37}_{-0.51}$. We find that the index of the Milky Ways gravitational potential $alpha$, which is dependent on the mass itself, is the parameter with the largest impact on the mass determination. Via comparison with cosmological simulations of Milky Way-like galaxies, we carried out a detailed analysis of the estimation of the observational uncertainties and their impact on the mass estimator. We found that the mass estimator is biased when applied naively to the satellites of simulated Milky Way halos. Correcting for this bias, we obtain for our Galaxy a mass of $0.58^{+0.15}_{-0.14}times10^{12}$M$_odot$ within 64 kpc, as computed from the inner half of our observational sample, and $1.43^{+0.35}_{-0.32}times10^{12}$M$_odot$ within 273 kpc, from the full sample; this latter value extrapolates to a virial mass of $M_mathrm{vir,Delta=97}$=$1.51^{+0.45}_{-0.40} times 10^{12}M_{odot}$ corresponding to a virial radius of R$_mathrm{vir}$=$308pm29$ kpc. This value of the Milky Way mass lies in-between other mass estimates reported in the literature, from various different methods.



rate research

Read More

279 - Jia-Cheng Liu , Yi Xie , Zi Zhu 2013
Accelerations of both the solar system barycenter (SSB) and stars in the Milky Way cause a systematic observational effect on the stellar proper motions, which was first studied in the early 1990s and developed by J. Kovalevsky (aberration in proper motions, 2003, A&A, 404, 743). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center. We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. Based on the theoretical developments, we show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Within 200 pc from the Galactic center, the systematic proper motion can reach an amplitude larger than 1000 uas/yr by applying a flat rotation curve. With a more realistic rotation curve which is linearly rising in the core region of the Galaxy, the aberrational proper motions are limited up to about 150 uas/yr. Then we investigate the applicability of the theoretical expressions concerning the aberrational proper motions, especially for those stars with short period orbits. If the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. The aberrational effect under consideration is small but not negligible with high-accurate astrometry in the future, particularly in constructing the Gaia celestial reference system realized by Galactic stars.
We have derived absolute proper motions of the entire Galactic bulge region from VIRAC and Gaia. We present these as both integrated on-sky maps and, after isolating standard candle red clump (RC) stars, as a function of distance using RC magnitude as a proxy. These data provide a new global, 3-dimensional view of the Milky Way barred bulge kinematics. We find a gradient in the mean longitudinal proper motion, $<mu_l^star>$, between the different sides of the bar, which is sensitive to the bar pattern speed. The split RC has distinct proper motions and is colder than other stars at similar distance. The proper motion correlation map has a quadrupole pattern in all magnitude slices showing no evidence for a separate, more axisymmetric inner bulge component. The line-of-sight integrated kinematic maps show a high central velocity dispersion surrounded by a more asymmetric dispersion profile. $sigma_{mu_l} / sigma_{mu_b}$ is smallest, $sim1.1$, near the minor axis and reaches $sim1.4$ near the disc plane. The integrated $<mu_b>$ pattern signals a superposition of bar rotation and internal streaming motion, with the near part shrinking in latitude and the far part expanding. To understand and interpret these remarkable data, we compare to a made-to-measure barred dynamical model, folding in the VIRAC selection function to construct mock maps. We find that our model of the barred bulge, with a pattern speed of 37.5 $mathrm{km , s^{-1} , kpc^{-1}}$, is able to reproduce all observed features impressively well. Dynamical models like this will be key to unlocking the full potential of these data.
With the release of Gaia DR2, it is now possible to measure the proper motions (PMs) of the lowest mass, ultra-faint satellite galaxies in the Milky Ways (MW) halo for the first time. Many of these faint satellites are posited to have been accreted as satellites of the Magellanic Clouds (MCs). Using their 6-dimensional phase space information, we calculate the orbital histories of 13 ultra-faint satellites and five classical dwarf spheroidals in a combined MW+LMC+SMC potential to determine which galaxies are dynamically associated with the MCs. These 18 galaxies are separated into four classes: i.) long-term Magellanic satellites that have been bound to the MCs for at least the last two consecutive orbits around the MCs (Carina 2, Carina 3, Horologium 1, Hydrus 1); ii.) Magellanic satellites that were recently captured by the MCs $<$ 1 Gyr ago (Reticulum 2, Phoenix 2); iii.) MW satellites that have interacted with the MCs (Sculptor 1, Tucana 3, Segue 1); and iv.) MW satellites (Aquarius 2, Canes Venatici 2, Crater 2, Draco 1, Draco 2, Hydra 2, Carina, Fornax, Ursa Minor). Results are reported for a range of MW and LMC masses. Contrary to previous work, we find no dynamical association between Carina, Fornax, and the MCs. Finally, we determine that the addition of the SMCs gravitational potential affects the longevity of satellites as members of the Magellanic system (long-term versus recently captured), but it does not change the total number of Magellanic satellites.
173 - Joshua D. Simon 2018
The second data release from the Gaia mission (DR2) provides a comprehensive and unprecedented picture of the motions of astronomical sources in the plane of the sky, extending from the solar neighborhood to the outer reaches of the Milky Way. I present proper motion measurements based on Gaia DR2 for 17 ultra-faint dwarf galaxies within 100 kpc of the Milky Way. I compile the spectroscopically-confirmed member stars in each dwarf bright enough for Gaia astrometry from the literature, producing member samples ranging from 2 stars in Triangulum II to 68 stars in Bootes I. From the spectroscopic member catalogs I estimate the proper motion of each system. I find good agreement with the proper motions derived by the Gaia collaboration for Bootes I and Leo I. The tangential velocities for 14 of the 17 dwarfs are determined to better than 50 km/s, more than doubling the sample of such measurements for Milky Way satellite galaxies. The orbital pericenters are well-constrained, with a median value of 38 kpc. Only one satellite, Tucana III, is on an orbit passing within 15 kpc of the Galactic center, suggesting that the remaining ultra-faint dwarfs are unlikely to have experienced severe tidal stripping. As a group, the ultra-faint dwarfs are on high-velocity, eccentric, retrograde trajectories, with nearly all of them having space motions exceeding 370 km/s. In a low-mass (M_vir = 0.8 x 10^12 M_sun) Milky Way potential, eight out of the 17 galaxies lack well-defined apocenters and appear likely to be on their first infall, indicating that the Milky Way mass may be larger than previously estimated or that many of the ultra-faint dwarfs are associated with the Magellanic Clouds. The median eccentricity of the ultra-faint dwarf orbits is 0.79, similar to the values seen in numerical simulations, but distinct from the rounder orbits of the more luminous dwarf spheroidals.
Based on Gaia Early Data Release 3 (EDR3), we estimate the proper motions for 46 dwarf spheroidal galaxies (dSphs) of the Milky Way. The uncertainties in proper motions, determined by combining both statistical and systematic errors, are smaller by a factor 2.5, when compared with Gaia Data Release 2. We have derived orbits in four Milky Way potential models that are consistent with the MW rotation curve, with total mass ranging from $2.8times10^{11}$ $M_{odot}$ to $15times10^{11}$ $M_{odot}$. Although the type of orbit (ellipse or hyperbola) are very dependent on the potential model, the pericenter values are firmly determined, largely independent of the adopted MW mass model. By analyzing the orbital phases, we found that the dSphs are highly concentrated close to their pericenter, rather than to their apocenter as expected from Keplers law. This may challenge the fact that most dSphs are Milky Way satellites, or alternatively indicates an unexpected large number of undiscovered dSphs lying very close to their apocenters. Between half and two thirds of the satellites have orbital poles that indicate them to orbit along the Vast Polar Structure (VPOS), with the vast majority of these co-orbiting in a common direction also shared by the Magellanic Clouds, which is indicative of a real structure of dSphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا