No Arabic abstract
Self-attention based Transformer has demonstrated the state-of-the-art performances in a number of natural language processing tasks. Self-attention is able to model long-term dependencies, but it may suffer from the extraction of irrelevant information in the context. To tackle the problem, we propose a novel model called textbf{Explicit Sparse Transformer}. Explicit Sparse Transformer is able to improve the concentration of attention on the global context through an explicit selection of the most relevant segments. Extensive experimental results on a series of natural language processing and computer vision tasks, including neural machine translation, image captioning, and language modeling, all demonstrate the advantages of Explicit Sparse Transformer in model performance. We also show that our proposed sparse attention method achieves comparable or better results than the previous sparse attention method, but significantly reduces training and testing time. For example, the inference speed is twice that of sparsemax in Transformer model. Code will be available at url{https://github.com/lancopku/Explicit-Sparse-Transformer}
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art results for various translation tasks. However, Transformer-based NMT only adds representations of positions sequentially to word vectors in the input sentence and does not explicitly consider reordering information in this sentence. In this paper, we first empirically investigate the relationship between source reordering information and translation performance. The empirical findings show that the source input with the target order learned from the bilingual parallel dataset can substantially improve translation performance. Thus, we propose a novel reordering method to explicitly model this reordering information for the Transformer-based NMT. The empirical results on the WMT14 English-to-German, WAT ASPEC Japanese-to-English, and WMT17 Chinese-to-English translation tasks show the effectiveness of the proposed approach.
We compute equations for real multiplication on the divisor classes of genus two curves via algebraic correspondences. We do so by implementing van Wamelens method for computing equations for endomorphisms of Jacobians on examples drawn from the algebraic models for Hilbert modular surfaces computed by Elkies and Kumar. We also compute a correspondence over the universal family for the Hilbert modular surface of discriminant 5 and use our equations to prove a conjecture of A. Wright on dynamics over the moduli space of Riemann surfaces.
Transformer has achieved great success in NLP. However, the quadratic complexity of the self-attention mechanism in Transformer makes it inefficient in handling long sequences. Many existing works explore to accelerate Transformers by computing sparse self-attention instead of a dense one, which usually attends to tokens at certain positions or randomly selected tokens. However, manually selected or random tokens may be uninformative for context modeling. In this paper, we propose Smart Bird, which is an efficient and effective Transformer with learnable sparse attention. In Smart Bird, we first compute a sketched attention matrix with a single-head low-dimensional Transformer, which aims to find potential important interactions between tokens. We then sample token pairs based on their probability scores derived from the sketched attention matrix to generate different sparse attention index matrices for different attention heads. Finally, we select token embeddings according to the index matrices to form the input of sparse attention networks. Extensive experiments on six benchmark datasets for different tasks validate the efficiency and effectiveness of Smart Bird in text modeling.
Recently, it has been argued that encoder-decoder models can be made more interpretable by replacing the softmax function in the attention with its sparse variants. In this work, we introduce a novel, simple method for achieving sparsity in attention: we replace the softmax activation with a ReLU, and show that sparsity naturally emerges from such a formulation. Training stability is achieved with layer normalization with either a specialized initialization or an additional gating function. Our model, which we call Rectified Linear Attention (ReLA), is easy to implement and more efficient than previously proposed sparse attention mechanisms. We apply ReLA to the Transformer and conduct experiments on five machine translation tasks. ReLA achieves translation performance comparable to several strong baselines, with training and decoding speed similar to that of the vanilla attention. Our analysis shows that ReLA delivers high sparsity rate and head diversity, and the induced cross attention achieves better accuracy with respect to source-target word alignment than recent sparsified softmax-based models. Intriguingly, ReLA heads also learn to attend to nothing (i.e. switch off) for some queries, which is not possible with sparsified softmax alternatives.
We present the first sentence simplification model that learns explicit edit operations (ADD, DELETE, and KEEP) via a neural programmer-interpreter approach. Most current neural sentence simplification systems are variants of sequence-to-sequence models adopted from machine translation. These methods learn to simplify sentences as a byproduct of the fact that they are trained on complex-simple sentence pairs. By contrast, our neural programmer-interpreter is directly trained to predict explicit edit operations on targeted parts of the input sentence, resembling the way that humans might perform simplification and revision. Our model outperforms previous state-of-the-art neural sentence simplification models (without external knowledge) by large margins on three benchmark text simplification corpora in terms of SARI (+0.95 WikiLarge, +1.89 WikiSmall, +1.41 Newsela), and is judged by humans to produce overall better and simpler output sentences.