Voter models on subcritical inhomogeneous random graphs


Abstract in English

The voter model is a classical interacting particle system modelling how consensus is formed across a network. We analyse the time to consensus for the voter model when the underlying graph is a subcritical scale-free random graph. Moreover, we generalise the model to include a `temperature parameter. The interplay between the temperature and the structure of the random graph leads to a very rich phase diagram, where in the different phases different parts of the underlying geometry dominate the time to consensus. Finally, we also consider a discursive voter model, where voters discuss their opinions with their neighbours. Our proofs rely on the well-known duality to coalescing random walks and a detailed understanding of the structure of the random graphs.

Download