We study the dynamical properties of a large body of varying vacuum cosmologies for which dark matter interacts with vacuum. In particular, performing the critical point analysis we investigate the existence and the stability of cosmological solutions which describe de-Sitter, radiation and matter dominated eras. We find several cases of varying vacuum models that admit stable critical points, hence they can be used in describing the cosmic history.
In the context of Finsler-Randers theory we consider, for a first time, the cosmological scenario of the varying vacuum. In particular, we assume the existence of a cosmological fluid source described by an ideal fluid and the varying vacuum terms. We determine the cosmological history of this model by performing a detailed study on the dynamics of the field equations. We determine the limit of General Relativity, while we find new eras in the cosmological history provided by the geometrodynamical terms provided by the Finsler-Randers theory.
In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and the FRW equations for the system assume a relatively simple form. In the limit of a slowly varying Elko spinor field there is a relevant contribution to the field equations acting exactly as a time varying cosmological model $Lambda(t)=Lambda_*+3beta H^2$, where $Lambda_*$ and $beta$ are constants. Observational data using distance luminosity from magnitudes of supernovae constraint the parameters $Omega_m$ and $beta$, which leads to a lower limit to the Elko mass. Such model mimics, then, the effects of a dark energy fluid, here sourced by the Elko spinor field. The density perturbations in the linear regime were also studied in the pseudo-Newtonian formalism.
In the present article we study the cosmological evolution of a two-scalar field gravitational theory defined in the Jordan frame. Specifically, we assume one of the scalar fields to be minimally coupled to gravity, while the second field which is the Brans-Dicke scalar field is nonminimally coupled to gravity and also coupled to the other scalar field. In the Einstein frame this theory reduces to a two-scalar field theory where the two fields can interact only in the potential term, which means that the quintom theory is recovered. The cosmological evolution is studied by analyzing the equilibrium points of the field equations in the Jordan frame. We find that the theory can describe the cosmological evolution in large scales, while inflationary solutions are also provided.
We investigate the dynamical features of a large family of running vacuum cosmologies for which $Lambda$ evolves as a polynomial in the Hubble parameter. Specifically, using the critical point analysis we study the existence and the stability of singular solutions which describe de-Sitter, radiation and matter dominated eras. We find several classes of $Lambda(H)$ cosmologies for which new analytical solutions are given in terms of Laurent expansions. Finally, we show that the Milne universe and the $R_{h}=ct$ model can be seen as perturbations around a specific $Lambda(H)$ model, but this model is unstable.
It has been suggested that the cosmological constant is a variable dynamical quantity. A class of solution has been presented for the spherically symmetric space time describing wormholes by assuming the erstwhile cosmological constant $Lambda$ to be a space variable scalar, viz., $Lambda$ = $Lambda (r) $ . It is shown that the Averaged Null Energy Condition (ANEC) violating exotic matter can be made arbitrarily small.