Do you want to publish a course? Click here

Simultaneous Segmentation and Relaxometry for MRI through Multitask Learning

131   0   0.0 ( 0 )
 Added by Peder Larson
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Purpose: This study demonstrated an MR signal multitask learning method for 3D simultaneous segmentation and relaxometry of human brain tissues. Materials and Methods: A 3D inversion-prepared balanced steady-state free precession sequence was used for acquiring in vivo multi-contrast brain images. The deep neural network contained 3 residual blocks, and each block had 8 fully connected layers with sigmoid activation, layer norm, and 256 neurons in each layer. Online synthesized MR signal evolutions and labels were used to train the neural network batch-by-batch. Empirically defined ranges of T1 and T2 values for the normal gray matter, white matter and cerebrospinal fluid (CSF) were used as the prior knowledge. MRI brain experiments were performed on 3 healthy volunteers as well as animal (N=6) and prostate patient (N=1) experiments. Results: In animal validation experiment, the differences/errors (mean difference $pm$ standard deviation of difference) between the T1 and T2 values estimated from the proposed method and the ground truth were 113 $pm$ 486 and 154 $pm$ 512 ms for T1, and 5 $pm$ 33 and 7 $pm$ 41 ms for T2, respectively. In healthy volunteer experiments (N=3), whole brain segmentation and relaxometry were finished within ~5 seconds. The estimated apparent T1 and T2 maps were in accordance with known brain anatomy, and not affected by coil sensitivity variation. Gray matter, white matter, and CSF were successfully segmented. The deep neural network can also generate synthetic T1 and T2 weighted images. Conclusion: The proposed multitask learning method can directly generate brain apparent T1 and T2 maps, as well as synthetic T1 and T2 weighted images, in conjunction with segmentation of gray matter, white matter and CSF.



rate research

Read More

This study presents a comparison of quantitative MRI methods based on an efficiency metric that quantifies their intrinsic ability to extract information about tissue parameters. Under a regime of unbiased parameter estimates, an intrinsic efficiency metric $eta$ was derived for fully-sampled experiments which can be used to both optimize and compare sequences. Here we optimize and compare several steady-state and transient gradient-echo based qMRI methods, such as magnetic resonance fingerprinting (MRF), for joint T1 and T2 mapping. The impact of undersampling was also evaluated, assuming incoherent aliasing that is treated as noise by parameter estimation. In-vivo validation of the efficiency metric was also performed. Transient methods such as MRF can be up to 3.5 times more efficient than steady-state methods, when spatial undersampling is ignored. If incoherent aliasing is treated as noise during least-squares parameter estimation, the efficiency is reduced in proportion to the SNR of the data, with reduction factors of 5 often seen for practical SNR levels. In-vivo validation showed a very good agreement between the theoretical and experimentally predicted efficiency. This work presents and validates an efficiency metric to optimize and compare the performance of qMRI methods. Transient methods were found to be intrinsically more efficient than steady-state methods, however the effect of spatial undersampling can significantly erode this advantage.
Magnetic Resonance Imaging (MRI) of hard biological tissues is challenging due to the fleeting lifetime and low strength of their response to resonant stimuli, especially at low magnetic fields. Consequently, the impact of MRI on some medical applications, such as dentistry, continues to be limited. Here, we present three-dimensional reconstructions of ex-vivo human teeth, as well as a rabbit head and part of a cow femur, all obtained at a field strength of only 260 mT. These images are the first featuring soft and hard tissues simultaneously at sub-Tesla fields, and they have been acquired in a home-made, special-purpose, pre-medical MRI scanner designed with the goal of demonstrating dental imaging at low field settings. We encode spatial information with two variations of zero-echo time (ZTE) pulse sequences: Pointwise-Encoding Time reduction with Radial Acquisition (PETRA) and a new sequence we have called Double Radial Non-Stop Spin Echo (DRaNSSE), which we find to perform better than the former. For image reconstruction we employ Algebraic Reconstruction Techniques (ART) as well as standard Fourier methods. A noise analysis of the resulting images shows that ART reconstructions exhibit a higher signal to noise ratio with a more homogeneous noise distribution.
Multi-contrast images are commonly acquired together to maximize complementary diagnostic information, albeit at the expense of longer scan times. A time-efficient strategy to acquire high-quality multi-contrast images is to accelerate individual sequences and then reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts. Such leakage-of-features may appear as artificial tissues, thereby misleading diagnosis. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms, thereby holding great promise for clinical use.
90 - Xue Dong , Yang Lei , Sibo Tian 2019
As bone and air produce weak signals with conventional MR sequences, segmentation of these tissues particularly difficult in MRI. We propose to integrate patch-based anatomical signatures and an auto-context model into a machine learning framework to iteratively segment MRI into air, bone and soft tissue. The proposed semantic classification random forest (SCRF) method consists of a training stage and a segmentation stage. During training stage, patch-based anatomical features were extracted from registered MRI-CT training images, and the most informative features were identified to train a series of classification forests with auto-context model. During segmentation stage, we extracted selected features from MRI and fed them into the well-trained forests for MRI segmentation. The DSC for air, bone and soft tissue obtained with proposed SCRF were 0.976, 0.819 and 0.932, compared to 0.916, 0.673 and 0.830 with RF, 0.942, 0.791 and 0.917 with U-Net. SCRF also demonstrated superior segmentation performances for sensitivity and specificity over RF and U-Net for all three structure types. The proposed segmentation technique could be a useful tool to segment bone, air and soft tissue, and have the potential to be applied to attenuation correction of PET/MRI system, MRI-only radiation treatment planning and MR-guided focused ultrasound surgery.
A major remaining challenge for magnetic resonance-based attenuation correction methods (MRAC) is their susceptibility to sources of MRI artifacts (e.g. implants, motion) and uncertainties due to the limitations of MRI contrast (e.g. accurate bone delineation and density, and separation of air/bone). We propose using a Bayesian deep convolutional neural network that, in addition to generating an initial pseudo-CT from MR data, also produces uncertainty estimates of the pseudo-CT to quantify the limitations of the MR data. These outputs are combined with MLAA reconstruction that uses the PET emission data to improve the attenuation maps. With the proposed approach (UpCT-MLAA), we demonstrate accurate estimation of PET uptake in pelvic lesions and show recovery of metal implants. In patients without implants, UpCT-MLAA had acceptable but slightly higher RMSE than Zero-echo-time and Dixon Deep pseudo-CT when compared to CTAC. In patients with metal implants, MLAA recovered the metal implant; however, anatomy outside the implant region was obscured by noise and crosstalk artifacts. Attenuation coefficients from the pseudo-CT from Dixon MRI were accurate in normal anatomy; however, the metal implant region was estimated to have attenuation coefficients of air. UpCT-MLAA estimated attenuation coefficients of metal implants alongside accurate anatomic depiction outside of implant regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا