Do you want to publish a course? Click here

Orthogonal Convolutional Neural Networks

84   0   0.0 ( 0 )
 Added by Jiayun Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep convolutional neural networks are hindered by training instability and feature redundancy towards further performance improvement. A promising solution is to impose orthogonality on convolutional filters. We develop an efficient approach to impose filter orthogonality on a convolutional layer based on the doubly block-Toeplitz matrix representation of the convolutional kernel instead of using the common kernel orthogonality approach, which we show is only necessary but not sufficient for ensuring orthogonal convolutions. Our proposed orthogonal convolution requires no additional parameters and little computational overhead. This method consistently outperforms the kernel orthogonality alternative on a wide range of tasks such as image classification and inpainting under supervised, semi-supervised and unsupervised settings. Further, it learns more diverse and expressive features with better training stability, robustness, and generalization. Our code is publicly available at https://github.com/samaonline/Orthogonal-Convolutional-Neural-Networks.



rate research

Read More

We propose contextual convolution (CoConv) for visual recognition. CoConv is a direct replacement of the standard convolution, which is the core component of convolutional neural networks. CoConv is implicitly equipped with the capability of incorporating contextual information while maintaining a similar number of parameters and computational cost compared to the standard convolution. CoConv is inspired by neuroscience studies indicating that (i) neurons, even from the primary visual cortex (V1 area), are involved in detection of contextual cues and that (ii) the activity of a visual neuron can be influenced by the stimuli placed entirely outside of its theoretical receptive field. On the one hand, we integrate CoConv in the widely-used residual networks and show improved recognition performance over baselines on the core tasks and benchmarks for visual recognition, namely image classification on the ImageNet data set and object detection on the MS COCO data set. On the other hand, we introduce CoConv in the generator of a state-of-the-art Generative Adversarial Network, showing improved generative results on CIFAR-10 and CelebA. Our code is available at https://github.com/iduta/coconv.
Imposing orthogonal transformations between layers of a neural network has been considered for several years now. This facilitates their learning, by limiting the explosion/vanishing of the gradient; decorrelates the features; improves the robustness. In this framework, this paper studies theoretical properties of orthogonal convolutional layers. More precisely, we establish necessary and sufficient conditions on the layer architecture guaranteeing the existence of an orthogonal convolutional transform. These conditions show that orthogonal convolutional transforms exist for almost all architectures used in practice. Recently, a regularization term imposing the orthogonality of convolutional layers has been proposed. We make the link between this regularization term and orthogonality measures. In doing so, we show that this regularization strategy is stable with respect to numerical and optimization errors and remains accurate when the size of the signals/images is large. This holds for both row and column orthogonality. Finally, we confirm these theoretical results with experiments, and also empirically study the landscape of the regularization term.
Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of parameters and high weights redundancy. Previous works have studied how to prune such CNNs weights. In this paper, we go to another extreme and analyze the performance of a network stacked with a single convolution kernel across layers, as well as other weights sharing techniques. We name it Deep Anchored Convolutional Neural Network (DACNN). Sharing the same kernel weights across layers allows to reduce the model size tremendously, more precisely, the network is compressed in memory by a factor of L, where L is the desired depth of the network, disregarding the fully connected layer for prediction. The number of parameters in DACNN barely increases as the network grows deeper, which allows us to build deep DACNNs without any concern about memory costs. We also introduce a partial shared weights network (DACNN-mix) as well as an easy-plug-in module, coined regulators, to boost the performance of our architecture. We validated our idea on 3 datasets: CIFAR-10, CIFAR-100 and SVHN. Our results show that we can save massive amounts of memory with our model, while maintaining a high accuracy performance.
Convolutions are the fundamental building block of CNNs. The fact that their weights are spatially shared is one of the main reasons for their widespread use, but it also is a major limitation, as it makes convolutions content agnostic. We propose a pixel-adaptive convolution (PAC) operation, a simple yet effective modification of standard convolutions, in which the filter weights are multiplied with a spatially-varying kernel that depends on learnable, local pixel features. PAC is a generalization of several popular filtering techniques and thus can be used for a wide range of use cases. Specifically, we demonstrate state-of-the-art performance when PAC is used for deep joint image upsampling. PAC also offers an effective alternative to fully-connected CRF (Full-CRF), called PAC-CRF, which performs competitively, while being considerably faster. In addition, we also demonstrate that PAC can be used as a drop-in replacement for convolution layers in pre-trained networks, resulting in consistent performance improvements.
Convolutional Neural Networks (CNNs) have achieved great success due to the powerful feature learning ability of convolution layers. Specifically, the standard convolution traverses the input images/features using a sliding window scheme to extract features. However, not all the windows contribute equally to the prediction results of CNNs. In practice, the convolutional operation on some of the windows (e.g., smooth windows that contain very similar pixels) can be very redundant and may introduce noises into the computation. Such redundancy may not only deteriorate the performance but also incur the unnecessary computational cost. Thus, it is important to reduce the computational redundancy of convolution to improve the performance. To this end, we propose a Content-aware Convolution (CAC) that automatically detects the smooth windows and applies a 1x1 convolutional kernel to replace the original large kernel. In this sense, we are able to effectively avoid the redundant computation on similar pixels. By replacing the standard convolution in CNNs with our CAC, the resultant models yield significantly better performance and lower computational cost than the baseline models with the standard convolution. More critically, we are able to dynamically allocate suitable computation resources according to the data smoothness of different images, making it possible for content-aware computation. Extensive experiments on various computer vision tasks demonstrate the superiority of our method over existing methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا