Ordinal Optimisation for the Gaussian Copula Model


Abstract in English

We present results on the estimation and evaluation of success probabilities for ordinal optimisation over uncountable sets (such as subsets of $mathbb{R}^{d}$). Our formulation invokes an assumption of a Gaussian copula model, and we show that the success probability can be equivalently computed by assuming a special case of additive noise. We formally prove a lower bound on the success probability under the Gaussian copula model, and numerical experiments demonstrate that the lower bound yields a reasonable approximation to the actual success probability. Lastly, we showcase the utility of our results by guaranteeing high success probabilities with ordinal optimisation.

Download