We determine the four Fermi effective theory of neutrino interactions within the Standard Model including one-loop electroweak radiative corrections, in combination with the measured muon lifetime and precision electroweak data. Including two-loop matching and three-loop running corrections, we determine lepton coefficients accounting for all large logarithms through relative order $cal{O}(alpha alpha_s)$ and quark coefficients accounting for all large logarithms through ${cal{O}}(alpha)$. We present four-fermion coefficients valid in $n_f=3$ and $n_f=4$ flavor quark theories, as well as in the extreme low-energy limit. We relate the coefficients in this limit to neutrino charge radii governing matter effects via forward neutrino scattering on charged particles.