Do you want to publish a course? Click here

Feedback Linearization for Unknown Systems via Reinforcement Learning

63   0   0.0 ( 0 )
 Added by Tyler Westenbroek
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a novel approach to control design for nonlinear systems which leverages model-free policy optimization techniques to learn a linearizing controller for a physical plant with unknown dynamics. Feedback linearization is a technique from nonlinear control which renders the input-output dynamics of a nonlinear plant emph{linear} under application of an appropriate feedback controller. Once a linearizing controller has been constructed, desired output trajectories for the nonlinear plant can be tracked using a variety of linear control techniques. However, the calculation of a linearizing controller requires a precise dynamics model for the system. As a result, model-based approaches for learning exact linearizing controllers generally require a simple, highly structured model of the system with easily identifiable parameters. In contrast, the model-free approach presented in this paper is able to approximate the linearizing controller for the plant using general function approximation architectures. Specifically, we formulate a continuous-time optimization problem over the parameters of a learned linearizing controller whose optima are the set of parameters which best linearize the plant. We derive conditions under which the learning problem is (strongly) convex and provide guarantees which ensure the true linearizing controller for the plant is recovered. We then discuss how model-free policy optimization algorithms can be used to solve a discrete-time approximation to the problem using data collected from the real-world plant. The utility of the framework is demonstrated in simulation and on a real-world robotic platform.



rate research

Read More

303 - Guannan Qu , Adam Wierman , Na Li 2019
We study reinforcement learning (RL) in a setting with a network of agents whose states and actions interact in a local manner where the objective is to find localized policies such that the (discounted) global reward is maximized. A fundamental challenge in this setting is that the state-action space size scales exponentially in the number of agents, rendering the problem intractable for large networks. In this paper, we propose a Scalable Actor-Critic (SAC) framework that exploits the network structure and finds a localized policy that is a $O(rho^kappa)$-approximation of a stationary point of the objective for some $rhoin(0,1)$, with complexity that scales with the local state-action space size of the largest $kappa$-hop neighborhood of the network.
It has long been recognized that multi-agent reinforcement learning (MARL) faces significant scalability issues due to the fact that the size of the state and action spaces are exponentially large in the number of agents. In this paper, we identify a rich class of networked MARL problems where the model exhibits a local dependence structure that allows it to be solved in a scalable manner. Specifically, we propose a Scalable Actor-Critic (SAC) method that can learn a near optimal localized policy for optimizing the average reward with complexity scaling with the state-action space size of local neighborhoods, as opposed to the entire network. Our result centers around identifying and exploiting an exponential decay property that ensures the effect of agents on each other decays exponentially fast in their graph distance.
This paper is an initial endeavor to bridge the gap between powerful Deep Reinforcement Learning methodologies and the problem of exploration/coverage of unknown terrains. Within this scope, MarsExplorer, an openai-gym compatible environment tailored to exploration/coverage of unknown areas, is presented. MarsExplorer translates the original robotics problem into a Reinforcement Learning setup that various off-the-shelf algorithms can tackle. Any learned policy can be straightforwardly applied to a robotic platform without an elaborate simulation model of the robots dynamics to apply a different learning/adaptation phase. One of its core features is the controllable multi-dimensional procedural generation of terrains, which is the key for producing policies with strong generalization capabilities. Four different state-of-the-art RL algorithms (A3C, PPO, Rainbow, and SAC) are trained on the MarsExplorer environment, and a proper evaluation of their results compared to the average human-level performance is reported. In the follow-up experimental analysis, the effect of the multi-dimensional difficulty setting on the learning capabilities of the best-performing algorithm (PPO) is analyzed. A milestone result is the generation of an exploration policy that follows the Hilbert curve without providing this information to the environment or rewarding directly or indirectly Hilbert-curve-like trajectories. The experimental analysis is concluded by comparing PPO learned policy results with frontier-based exploration context for extended terrain sizes. The source code can be found at: https://github.com/dimikout3/GeneralExplorationPolicy.
We formulate the problem of sampling and recovering clustered graph signal as a multi-armed bandit (MAB) problem. This formulation lends naturally to learning sampling strategies using the well-known gradient MAB algorithm. In particular, the sampling strategy is represented as a probability distribution over the individual arms of the MAB and optimized using gradient ascent. Some illustrative numerical experiments indicate that the sampling strategies based on the gradient MAB algorithm outperform existing sampling methods.
We revisit the Thompson sampling algorithm to control an unknown linear quadratic (LQ) system recently proposed by Ouyang et al (arXiv:1709.04047). The regret bound of the algorithm was derived under a technical assumption on the induced norm of the closed loop system. In this technical note, we show that by making a minor modification in the algorithm (in particular, ensuring that an episode does not end too soon), this technical assumption on the induced norm can be replaced by a milder assumption in terms of the spectral radius of the closed loop system. The modified algorithm has the same Bayesian regret of $tilde{mathcal{O}}(sqrt{T})$, where $T$ is the time-horizon and the $tilde{mathcal{O}}(cdot)$ notation hides logarithmic terms in~$T$.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا